UNIVERSITY OF CALICUT

B.Sc. CHEMISTRY HONOURS

(MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS & MODEL QUESTION PAPERS w.e.f. 2024 admission onwards

(CUFYUGP Regulations 2024)

B.Sc. CHEMISTRY HONOURS (MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS

INDEX

SL NO.	CONTENT	PAGE
1	PROGRAMME OUTCOME	1
2	PROGRAMME SPECIFIC OUTCOME	1
3	MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS IN THE THREE-YEAR PROGRAMME IN <u>CUFYUGP</u>	2
4	B.SC. CHEMISTRY HONOURS PROGRAMME COURSE STRUCTURE FOR PATHWAYS 1 – 4	3
5	COURSE STRUCTURE IN PATHWAY 5: DOUBLE MAJOR	17
6	EVALUATION SCHEME	27
7	LETTER GRADES AND GRADE POINTS	36
8	CORE COURSES IN MAJOR	40
9	ELECTIVE COURSES IN MAJOR	186
10	MINOR COURSES	262
11	VOCATIONAL MINOR COURSES	364
12	SKILL ENHANCEMENT COURSES	407
13	VALUE ADDED COURSES	425
14	MULTI-DISCIPLINARY COURSES	435

PROGRAMME OUTCOMES (PO):

At the end of the graduate programme at Calicut University, a student would:

	Knowledge Acquisition:
PO1	Demonstrate a profound understanding of knowledge trends and their impact on the chosen discipline of study.
	Communication, Collaboration, Inclusiveness, and Leadership:
PO2	Become a team player who drives positive change through effective communication, collaborative acumen, transformative leadership, and a dedication to inclusivity.
	Professional Skills:
PO3	Demonstrate professional skills to navigate diverse career paths with confidence and adaptability.
	Digital Intelligence:
PO4	Demonstrate proficiency in varied digital and technological tools to understand and interact with the digital world, thus effectively processing complex information.
	Scientific Awareness and Critical Thinking:
PO5	Emerge as an innovative problem-solver and impactful mediator, applying scientific understanding and critical thinking to address challenges and advance sustainable solutions.
	Human Values, Professional Ethics, and Societal and Environmental Responsibility:
PO6	Become a responsible leader, characterized by an unwavering commitment to human values, ethical conduct, and a fervent dedication
	to the well-being of society and the environment.
	Research, Innovation, and Entrepreneurship:
PO7	Emerge as a researcher and entrepreneurial leader, forging collaborative partnerships with industry, academia, and communities to contribute enduring solutions for local, regional, and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the BSc Chemistry Honours programme at Calicut University, a student would:

PSO1 Understand theoretical concepts and applications across major chemistry subfields, including inorganic, organic, physical, analytical chemistry, and quantum mechanics.

PSO2	Evaluate complex chemical phenomena and real-world problems by applying principles of theoretical chemistry and computational chemistry.							
PSO3	Develop practical skills in handling chemicals safely, preparing solutions, conducting experiments, and analyzing chemical species in the lab.							
PSO4	Design and execute a project to solve real-world problems following the needs of society and academic research within a stipulated time frame.							
PSO5	Acquire foundational knowledge of chemistry essential for advanced studies in interdisciplinary fields such as Physics, Mathematics, Botany, Zoology, Geology, and other related disciplines.							
PSO6	Apply chemistry knowledge to various industries including pharmaceuticals, materials science, energy, polymer, and environmental monitoring.							

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS IN THE THREE-YEAR PROGRAMME IN CUFYUGP

Sl. No	Academic Pathway		Minor/ Other Disciplines ourse has redits	Foundation Courses AEC: 4 MDC: 3 SEC: 3 VAC: 3	Intern -ship	Total Credit s	Example
		C		Each course has 3 credits			
1	Single Major (A)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Chemistry + six courses in different disciplines in different combinations
2	Major (A) with Multiple Disciplines (B, C)	68 (17 courses)	12 + 12 (3 + 3 = 6 courses)	39 (13 courses)	2	133	Major: Chemistry + Mathematics and Physics
3	Major (A) with	68	24	39	2	133	Major: Chemistry,

	Minor (B)	(17 courses)	(6 courses)	(13 courses)			Minor: Physics			
4	Major (A) with Vocational Minor (B)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Chemistry, Minor: Vocational Chemistry			
5	Double Major (A, B)	A: 48 (12 courses) B: 44 (11 courses)	are distribut Majors. 2 MDC, 2 Internship sl Total credits 48 + 20 = 68 1 MDC, 1 S be in Major F	12 + 18 + 9 its in the Mino ted between SEC, 2 VAC hould be in N in Major A sl (50% of 133) EC and 1 VAC 3. Total credits 44 + 9 = 53	and the fajor A. hould be C should in Major	133	Chemistry and Physics double major			
	Exit with UG Degree / Proceed to Fourth Year with 133 Credits									

B.Sc. CHEMISTRY HONOURS PROGRAMME COURSE STRUCTURE FOR PATHWAYS 1 – 4

	0 0			 Major with Multiple Disciplines Major with Vocational Minor 					
Se	Course	Course		Hours/	Credi	Marks			
mes ter	Code	Course Title	Total Hours	Week	ts	Inte rnal	Exte rnal	Total	
1	CHE1CJ 101/ CHE1M N100	CORE COURSE 1 IN MAJOR – INORGANIC CHEMISTRY I	75	5	4	30	70	100	
		MINOR COURSE 1	60/75	4/5	4	30	70	100	
		MINOR COURSE 2	60/75	4/5	4	30	70	100	

	ENG1F					I				
	A	ABILITY ENHANCEMENT COURSE 1– ENGLISH	60	4	3	25	50	75		
	101(2)									
		ABILITY ENHANCEMENT				25	50	75		
		COURSE 2 – ADDITIONAL	45	45	45 3	3	3		20	
		LANGUAGE								
		MULTI-DISCIPLINARY COURSE 1	45	3	3	25	50	75		
		– OTHER THAN MAJOR		_	_					
		TOTAL		23/25	21			525		
	CHE2CJ	CORE COURSE 2 IN MAJOR-								
	101/	PHYSICAL CHEMISTRY –I:	75	5	4	30	70	100		
	CHE2M	STATES OF MATTER	, 0	U						
	N100									
		MINOR COURSE 3	60/75	4/5	4	30	70	100		
		MINOR COURSE 4	60/75	4/5	4	30	70	100		
	ENG2F	ABILITY ENHANCEMENT				25	50			
2	A	COURSE 3– ENGLISH	60	4	3			75		
	103(2)	03(2)								
		ABILITY ENHANCEMENT				25	50	75		
		COURSE 4 – ADDITIONAL	45	45 3	3 3					
		LANGUAGE								
		MULTI-DISCIPLINARY COURSE 2		3	3	25	50	75		
		– OTHER THAN MAJOR	45	5	U					
		TOTAL		23/25	21			525		
	CHE3CJ	CORE COURSE 3 IN MAJOR –				30	70	100		
	201	THEORETICAL CHEMISTRY I:	60	4	4 4	20	/0	100		
	201	BASIC QUANTUM CHEMISTRY								
	CHE3CJ									
	202/	CORE COURSE 4 IN MAJOR –	75	5	4	30	70	100		
	CHE3M	ORGANIC CHEMISTRY 1	15	5	+	50	, 0	100		
	N200									
		MINOR COURSE 5	60/75	4/5	4	30	70	100		
3		MINOR COURSE 6	60/75	4/5	4	30	70	100		
		MULTI-DISCIPLINARY COURSE 3				25	50	75		
		– KERALA KNOWLEDGE	45	3	3		20	15		
		SYSTEM								
	ENG3F	VALUE-ADDED COURSE 1 –				25	50	75		
	V	ENGLISH	45	3	3					
	108(2)									

	CHE4CJ	CORE COURSE 5 IN MAJOR –	75		1	•	- 0	100
	203	INORGANIC CHEMISTRY-II		5	4	30	70	100
-	CHE4CJ	CORE COURSE 6 IN MAJOR –				20	70	100
	204	ORGANIC CHEMISTRY-II	75	5	4	30	70	100
_		CORE COURSE 7 IN MAJOR –				30	70	100
		PHYSICAL CHEMISTRY –II:				50	70	100
	CHE4CJ 205	CHEMICAL THERMODYNAMICS,	75	5	4			
	203	KINETICS & SURFACE						
		CHEMISTRY						
4	ENG4F	VALUE-ADDED COURSE 2 –				25	50	75
	V	ENGLISH	45	3	3			
	109(2)							
		VALUE-ADDED COURSE 3 –	45	3	3	25	50	75
-		ADDITIONAL LANGUAGE						
	ENG4F	SKILL ENHANCEMENT COURSE	(0)	4	2	25	50	75
	S	1 – ENGLISH	60	4	3			
-	111(2)							
		TOTAL		25	21			525
		CORE COURSE 8 IN MAJOR –				30	70	100
	CHE5CJ	THEORETICAL CHEMISTRY II:	60	4	4			
	301	GROUP THEORY AND						
-		MOLECULAR SPECTROSCOPY						
	CHE5CJ	CORE COURSE 9 IN MAJOR –	75	5	4	30	70	100
_	302 CHE5CJ	INORGANIC CHEMISTRY-III CORE COURSE 10 IN MAJOR –						
5	303	ORGANIC CHEMISTRY - III	75	5	4	30	70	100
-	303	ELECTIVE COURSE 1 IN MAJOR	60	4	4	30	70	100
-		ELECTIVE COURSE 2 IN MAJOR	60	4	4	30	70	100
		SKILL ENHANCEMENT COURSE				25	50	75
		2	45	3	3	23	50	15
		TOTAL		25	23			575
	CHE6CJ							
	304/	CORE COURSE 11 IN MAJOR –	<i>c</i> 0	4	4	30	70	100
	CHE8M	INORGANIC CHEMISTRY-IV	60	4	4	50	70	100
E	N304							
6	CHE6CJ							
		CODE COURCE 10 DUNCTION	1		~			
	305/	CORE COURSE 12 IN MAJOR-	75	5	1	30	70	100
	305/ CHE8M	ORGANIC CHEMISTRY - IV	75	5	4	30	70	100

CHE6CJPHYSICAL CHEMISTRY – III: 306/306/CHEMICAL AND PHASE CHE8M75543070S06/CHEMICAL AND PHASE EQUILIBRIA, PHOTOCHEMISTRY AND PHOTOCHEMISTRY755441070ELECTIVE COURSE 3 IN MAJOR60443070ELECTIVE COURSE 4 IN MAJOR60443070SKILL ENHANCEMENT COURSE10102550	100
306/ CHEMICAL AND PHASE CHE8M N306703070N306ELECTROCHEMISTRY AND PHOTOCHEMISTRY7554ELECTIVE COURSE 3 IN MAJOR604430ELECTIVE COURSE 4 IN MAJOR60443070SKILL ENHANCEMENT COURSESKILL ENHANCEMENT COURSE5455	100
CHE8MEQUILIBRIA,7554N306ELECTROCHEMISTRY AND PHOTOCHEMISTRYELECTIVE COURSE 3 IN MAJOR60443070ELECTIVE COURSE 4 IN MAJOR60443070SKILL ENHANCEMENT COURSE	
N306 ELECTROCHEMISTRY AND PHOTOCHEMISTRY - - - ELECTIVE COURSE 3 IN MAJOR 60 4 4 30 70 ELECTIVE COURSE 4 IN MAJOR 60 4 4 30 70 SKILL ENHANCEMENT COURSE - - - - -	
PHOTOCHEMISTRYImage: Constraint of the second s	
ELECTIVE COURSE 3 IN MAJOR60443070ELECTIVE COURSE 4 IN MAJOR60443070SKILL ENHANCEMENT COURSE	
ELECTIVE COURSE 4 IN MAJOR 60 4 4 30 70 SKILL ENHANCEMENT COURSE	100
SKILL ENHANCEMENT COURSE	100
	100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	75
INTERNSHIP IN MAJOR (CREDIT 50 -	50
CHE6CJ FOR INTERNSHIP TO BE 60 2	
349 AWARDED ONLY AT THE END	
OF SEMESTER 6)	
TOTAL 25 25	625
TOTAL CREDITS FOR THREE YEARS133	3325
CHE7CJ CORE COURSE 14 IN MAJOR – 30 70	100
401 THEORETICAL CHEMISTRY III: 75 5 4	100
ADVANCED QUANTUM	
CHEMISTRY	
CHE7CJ CORE COURSE 15 IN MAJOR – 75 5 4 30 70	100
402INORGANIC CHEMISTRY-V75545070	100
CHE7CJ CORE COURSE 16 IN MAJOR – 75 5 4 30 70	100
403ORGANIC CHEMISTRY V75545070	100
/ CHE7CJ CORE COURSE 17 IN MAJOR – 30 70	100
404 PHYSICAL CHEMISTRY IV:	100
STATISTICAL 75 5 4	
THERMODYNAMICS	
CHE7CJ CORE COURSE 18 IN MAJOR – 30 70	100
405INSTRUMENTAL METHODS OF755470	100
ANALYSIS	
TOTAL 25 20	500
CHE8CJ CORE COURSE 19 IN MAJOR –	
406/ INORGANIC CHEMISTRY-VI 60 4 4 30 70	100
$\begin{bmatrix} 1000 \\ \text{CHE8M} \end{bmatrix}$	100
N406	
8 CHE8CJ CORE COURSE 20 IN MAJOR –	
407/ ORGANIC CHEMISTRY- VI 75 5 4 30 70	100
CHE8M 75 5 4 30 70	100
	1

,	TOTAL CREDITS FOR FOUR YEAR	S		177			4425
	TOTAL		25	24			600
CHE8CJ 489	RESEARCH METHODOLOGY IN CHEMISTRY	60	4	4	30	70	100
	RESEARCH PR						
OR (IN	STEAD OF ELECTIVE COURSE 7 IN N	I MAJOR. I	N THE C	L CASE OI	I F HON	OURS '	WITH
	DISCIPLINE						
	COURSE IN ANY OTHER	60	4	4	30	70	100
	ELECTIVE COURSE 7 IN MAJOR / MINOR COURSE 9 / MAJOR						
	MINOR COURSE 8			· ·			
	ELECTIVE COURSE 6 IN MAJOR /	60	4	4	30	70	100
	MINOR COURSE 7	00	-	-		, , ,	100
	ELECTIVE COURSE 5 IN MAJOR /	60	4	4	30	70	100
	PROGRAMME)						
499	(IN HONOURS WITH RESEARCH	360*	13*	12	90	210	500
CHE8CJ	PROJECT				90	210	300
449	PROGRAMME)	360*	13*	12	90	210	300
CHE8CJ	PROJECT (IN HONOURS				, 	• • •	• • • •
	ELECTROCHEMISTRY OR (INSTEAD OF CORE CO		10 21 IN		2)		
N408	STATE AND						
CHE8M	ADVANCED TOPICS IN SOLID	60	4	4			
408/	PHYSICAL CHEMISTRY- V:				30	70	100
CHE8CJ	CORE COURSE 21 IN MAJOR –						

* The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

CREDIT DISTRIBUTIONFOR PATHWAYS 1 – 4

- 1. Single Major
- 3. Major with Minor

Major with Multiple Disciplines
 Major with Vocational Minor

Semester	Major Courses	Minor Courses	General Foundation Courses	Internship/ Project	Total
1	4	4 + 4	3+3+3	-	21
2	4	4 + 4	3+3+3	-	21
3	4 + 4	4 + 4	3 + 3	-	22

4	4 + 4 + 4	-	3+3+3	-	21
5	4 + 4 + 4 + 4 + 4	-	3	-	23
6	4 + 4 + 4 + 4 + 4	-	3	2	25
Total for					
Three	68	24	39	2	133
Years					
7	4 + 4 + 4 + 4 + 4	-	-	-	20
8	4 + 4 + 4	4 + 4 + 4	-	12*	24
	* in	stead of thre	e Major course	es	
Total for					
Four	88 + 12 = 100	36	39	2	177
Years					

DISTRIBUTION OF MAJOR COURSES IN CHEMISTRY FOR PATHWAYS 1 – 4

- 1. Single Major
- 3. Major with Minor

2. Major with Multiple Disciplines

4. Major with Vocational Minor

Semester	Course Code	Course Title	Hours/ Week	Credits
1	CHE1CJ 101 / CHE1MN 100	CORE COURSE 1 IN MAJOR – INORGANIC CHEMISTRY - I	5	4
2	CHE2CJ 101 / CHE2MN 100	CORE COURSE 2 IN MAJOR –PHYSICAL CHEMISTRY – I: STATES OF MATTER	5	4
3	CHE3CJ 201	CORE COURSE 3 IN MAJOR –THEORETICAL CHEMISTRY – I: BASIC QUANTUM CHEMISTRY	4	4
5	CHE3CJ 202 / CHE3MN 200	CORE COURSE 4 IN MAJOR – ORGANIC CHEMISTRY - I	5	4
	CHE4CJ 203	CORE COURSE 5 IN MAJOR – INORGANIC CHEMISTRY-II	5	4
4	CHE4CJ 204	CORE COURSE 6 IN MAJOR – ORGANIC CHEMISTRY-II	5	4

	CHE4CJ 205	CORE COURSE 7 IN MAJOR – PHYSICAL CHEMISTRY-II: CHEMICAL THERMODYNAMICS KINETICS AND SURFACECHEMISTRY	5	4
	CHE5CJ 301	CORE COURSE 8 IN MAJOR – THEORETICAL CHEMISTRY – II: GROUP THEORY AND MOLECULAR SPECTROSCOPY	4	4
5	CHE5CJ 302	CORE COURSE 9 IN MAJOR – INORGANIC CHEMISTRY - III	5	4
	CHE5CJ 303	CORE COURSE 10 IN MAJOR – ORGANIC CHEMISTRY - III	5	4
		ELECTIVE COURSE 1 IN MAJOR	4	4
		ELECTIVE COURSE 2 IN MAJOR	4	4
	CHE6CJ 304 / CHE8MN 304	CORE COURSE 11 IN MAJOR – INORGANIC CHEMISTRY - IV	4	4
	CHE6CJ 305 / CHE8MN 305	CORE COURSE 12 IN MAJOR–ORGANIC CHEMISTRY - IV	5	4
6	CHE6CJ 306 / CHE8MN 306	CORE COURSE 13 IN MAJOR – PHYSICAL CHEMISTRY – III: CHEMICAL AND PHASE EQUILIBRIA, ELECTROCHEMISTRY AND PHOTOCHEMISTRY	5	4
		ELECTIVE COURSE 3 IN MAJOR	4	4
		ELECTIVE COURSE 4 IN MAJOR	4	4
	CHE6CJ 349	INTERNSHIP IN MAJOR	-	2
	ТОТ	AL FOR THE THREE YEARS		70
	CHE7CJ 401	CORE COURSE 14 IN MAJOR – THEORETICAL CHEMISTRY III: ADVANCED QUANTUM CHEMISTRY	5	4
7	CHE7CJ 402	CORE COURSE 15 IN MAJOR – INORGANIC CHEMISTRY-V	5	4
	CHE7CJ 403	CORE COURSE 16 IN MAJOR – ORGANIC CHEMISTRY V	5	4

	CHE7CJ 405	CORE COURSE 18 IN MAJOR – INSTRUMENTAL METHODS OF ANALYSIS	5	4
	CHE8CJ	CORE COURSE 19 IN MAJOR – INORGANIC		
	406 /	CHEMISTRY -VI		
	CHE8MN		4	4
	406			
	CHE8CJ	CORE COURSE 20 IN MAJOR – ORGANIC		
	407 /	CHEMISTRY- VI	5	4
	CHE8MN		5	4
	407			
	CHE8CJ	CORE COURSE 21 IN MAJOR – PHYSICAL		
	408 /	CHEMISTRY V: ADVANCED TOPICS IN	4	4
	CHE8MN	SOLID STATE AND ELECTROCHEMISTRY		-
_	408			
8		OR (INSTEAD OF CORE COURSES 19 - 21 IN M	AJOR)	1
	CHE8CJ	PROJECT	13	12
	449	(IN HONOURS PROGRAMME)		
	CHE8CJ	RESEARCH PROJECT	13	
	499	(IN HONOURS WITH RESEARCH		12
		PROGRAMME)		
		ELECTIVE COURSE 5 IN MAJOR	4	4
		ELECTIVE COURSE 6 IN MAJOR	4	4
		ELECTIVE COURSE 7 IN MAJOR	4	4
	OR (INS'	TEAD OF ELECTIVE COURSE 7 IN MAJOR, IN H RESEARCH PROGRAMME)	ONOURS	WITH
	CHE8CJ	RESEARCH METHODOLOGY IN	4	4
	489	CHEMISTRY		<u> </u>
	ТО	TAL FOR THE FOUR YEARS		114

ELECTIVE COURSES IN CHEMISTRY

Sl.	Course	Title	Seme	Total	Hrs/	Cre		Marks	6
No.	Code		ster	Hrs	Week	dits	Inte rnal	Exte rnal	Total
1	CHE5EJ	GREEN CHEMISTRY	5	60	4	4	30	70	100
	301								
2	CHE5EJ	NANOSCIENCE AND	5	60	4	4	30	70	100
	302	NANOTECHNOLOGY							
3	CHE5EJ	BIO CO-ORDINATION	5	60	4	4	30	70	100
	303	CHEMISTRY							
4	CHE5EJ	FOOD CHEMISTRY	5	60	4	4	30	70	100
	304	FOOD CHEWISTRY							
	1	Among the four elective cour	ses two c	an be se	lected in	the fif	th seme	ester	
5	CHE6EJ	POLYMER	6	60	4	4	30	70	100
	311	CHEMISTRY							
6	CHE6EJ	INDUSTRIAL	6	60	4	4	30	70	100
	312	CHEMISTRY							
7	CHE6EJ	ADVANCED ENERGY	6	60	4	4	30	70	100
	313	MATERIALS							
8	CHE6EJ	MATERIAL SCIENCE	6	60	4	4	30	70	100
	314								
	А	mong the four Elective Cour	ses two c	an be se	lected in	the Si	xth sem	lester	
9	CHE8EJ	INDUSTRIAL	8	60	4	4	30	70	100
	409	CATALYSIS							
10	CHE8EJ	ADVANCED ORGANIC	8	60	4	4	30	70	100
	410	CHEMISTRY							
11	CHE8EJ	MODERN ORGANIC	8	60	4	4	30	70	100
	411	SYNTHESIS							

12	CHE8EJ 412	COMPUTATIONAL CHEMISTRY	8	60	4	4	30	70	100		
13	CHE8EJ	PETROCHEMICALS	8	60	4	4	30	70	100		
	413	AND COSMETICS									
14	CHE8EJ	ADVANCED TOPICS IN	8	60	4	4	30	70	100		
	414	INORGANIC									
	414	CHEMISTRY									
	Among the Six Elective Courses three can be selected in the Eighth semester										

GROUPING OF MINOR COURSES IN CHEMISTRY

(Title of the Minor: INTRODUCTORY CHEMISTRY)

The minor courses given below should not be offered to students who have taken chemistry as the major discipline. They should be offered to students from other major discipline only

Group	Sl.	Course	Title	Seme	Total	Hrs/	Cre		Marks	
No.	No.	Code		ster	Hrs	Week	dits	Trata	E-rto	Tatal
								Inte	Exte	Total
								rnal	rnal	
1			GENERAL AND T	HEORI	ETICAI	CHEM	ISTR	Y		
			(Preferabl	le for Phy	ysics stu	dents)				
	1	CHE1MN	BASIC INORGANIC	1	75	5	4	30	70	100
		101	AND NANO							
		101	CHEMISTRY							
	2	CHEMM		2	75	5	4	30	70	100
	Z	CHE2MN	QUANTUM	Z	15	5	4	30	70	100
		101	MECHANICS, SOLID							
			STATES AND							
			GASEOUS STATES							
	3	CHE3MN	BASIC ORGANIC	3	75	5	4	30	70	100
		201	CHEMISTRY							
		201								
		I		<u> </u>		1	<u> </u>		<u> </u>	
2			GENERAL CHEM	ISTRY /	AND BI	OMOLI	ECULI	ES		
_		(Preferabl	e for Zoology, Botany, Micro						nce stud	lents)
	1	CHE1MN	BASIC INORGANIC	1	75	5	4	30	70	100
			AND BIO-INORGANIC	-	, 0	ĩ		20	, ,	100
		102	CHEMISTRY							

	-			-									
	2	CHE2MN	LIQUID STATE,	2	75	5	4	30	70	100			
		102	GASEOUS STATE AND										
		102	ELECTROCHEMISTRY										
	3	CHE3MN	BIOORGANIC	3	75	5	4	20	70	100			
	3	CHESMIN		3	15	5	4	30	70	100			
		202	CHEMISTRY										
2									DX7				
3		FUNDAMENTALS OF CHEMISTRY AND PHYTOCHEMISTRY (Preferable for Botany and Zoology students)											
			-	-						100			
	1	CHE1MN	BASIC INORGANIC	1	75	5	4	30	70	100			
		103	AND GREEN										
		105	CHEMISTRY										
	2	CHE2MN	PHYSICAL	2	75	5	4	30	70	100			
	2	CHEZIMIN	PROPERTIES OF	2	15	5	т	50	70	100			
		103	SOLUTIONS, GASES										
			AND COLLOIDS										
	3	CHE3MN	ORGANIC AND	3	75	5	4	30	70	100			
		202	PHYTOCHEMISTRY										
		203											
					•		-		•				
4			FUNDAMENTAL (CHEMI	STRY O	F MAT	ERIA	LS					
4								LS					
4	1	CHE1MN	FUNDAMENTAL ((Preferable for C BASIC INORGANIC					LS 30	70	100			
4	1		(Preferable for C	Geology	and phys	ics stude	ents)	I	70	100			
4	1	CHE1MN 104	(Preferable for C BASIC INORGANIC CHEMISTRY AND	Geology	and phys	ics stude	ents)	I	70	100			
4		104	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY	Geology	and phys 75	ics stude 5	ents) 4	30					
4	1		(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER	Geology	and phys	ics stude	ents)	I	70	100			
4		104 CHE2MN	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY	Geology	and phys 75	ics stude 5	ents) 4	30					
4		104	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER	Geology	and phys 75	ics stude 5	ents) 4	30					
4	2	104 CHE2MN 104	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY	Geology 1 2	and phys 75 75	ics stude 5 5	ents) 4 4 4	30 30	70	100			
4		104 CHE2MN	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY ORGANIC CHEMISTRY	Geology	and phys 75	ics stude 5	ents) 4	30					
4	2	104 CHE2MN 104	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY	Geology 1 2	and phys 75 75	ics stude 5 5	ents) 4 4 4	30 30	70	100			
4	2	104 CHE2MN 104 CHE3MN	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY ORGANIC CHEMISTRY	Geology 1 2	and phys 75 75	ics stude 5 5	ents) 4 4 4	30 30	70	100			
	2	104 CHE2MN 104 CHE3MN	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY ORGANIC CHEMISTRY IN DAILY LIFE	Geology 1 2 3	and phys 75 75 75	5 5 5 5	ents) 4 4 4 4 4	30 30 30	70	100			
4	2	104 CHE2MN 104 CHE3MN	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY ORGANIC CHEMISTRY IN DAILY LIFE BASIC CHEMIST	Geology 1 2 3 RY AND	and phys 75 75 75 75 POLY	stude 5 5 5 MER SO	ents) 4 4 4 4 CIENC	30 30 30 CE	70	100			
	2 3	104 CHE2MN 104 CHE3MN 204	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY ORGANIC CHEMISTRY IN DAILY LIFE BASIC CHEMISTI (Preferable for Environ	J 1 2 3 RY AND mental s	and phys 75 75 75 75 POLY cience at	5 5 5 MER SC	ents) 4 4 4 4 4 CIENC	30 30 30 CE ents)	70	100			
	2	104 CHE2MN 104 CHE3MN	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY ORGANIC CHEMISTRY IN DAILY LIFE BASIC CHEMISTI (Preferable for Environ BASIC INORGANIC	Geology 1 2 3 RY AND	and phys 75 75 75 75 POLY	stude 5 5 5 MER SO	ents) 4 4 4 4 CIENC	30 30 30 CE	70	100			
	2 3	104 CHE2MN 104 CHE3MN 204	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY ORGANIC CHEMISTRY IN DAILY LIFE BASIC CHEMIST (Preferable for Environ BASIC INORGANIC AND NUCLEAR	J 1 2 3 RY AND mental s	and phys 75 75 75 75 POLY cience at	5 5 5 MER SC	ents) 4 4 4 4 4 CIENC	30 30 30 CE ents)	70	100			
	2 3	104 CHE2MN 104 CHE3MN 204 CHE1MN	(Preferable for C BASIC INORGANIC CHEMISTRY AND METALLURGY STATES OF MATTER AND NUCLEAR CHEMISTRY ORGANIC CHEMISTRY IN DAILY LIFE BASIC CHEMISTI (Preferable for Environ BASIC INORGANIC	J 1 2 3 RY AND mental s	and phys 75 75 75 75 POLY cience at	5 5 5 MER SC	ents) 4 4 4 4 4 CIENC	30 30 30 CE ents)	70	100			

	2	CHE2MN	SOLUTIONS AND	2	75	5	4	30	70	100
		105	SURFACE CHEMISTRY							
		105								
	3	CHE3MN	ORGANIC CHEMISTRY	3	75	5	4	30	70	100
		205	AND POLYMERS							
		205								
		1		1			1	1		
6			FUNDAMEN	TALS (OF CHE	MISTR	Y			
			(Preferable for Physics, B	otany, Z	loology,a	and Geol	ogy sti	udents)		
	1	CHE1MN		1	75	5	4	30	70	100
		100/	INORGANIC							
		CHE1CJ	CHEMISTRY – I							
		101								
	2	CHE2MN		2	75	5	4	30	70	100
		100 /	PHYSICAL							
		CHE2CJ	CHEMISTRY – I:							
			STATES OF MATTER							
		101								
	3	CHE3MN		3	75	5	4	30	70	100
		200/	ORGANIC CHEMISTRY	_		-				
		CHE3CJ	-I							
			-1							
		202								
								1		
			BASIC AND	APPLI	ED CHE	MISTR	Y			
			(Preferable for Physic	ics, Zool	ogy and	Botany s	student	cs)		
		1				-				
7	1	CHE1MN	COORDINATION	1	75	5	4	30	70	100
	1	CHEIMIN		1	13	5	4	50	70	100
		106	CHEMISTRY							
	2	CHE2MN	FUNDAMENTALS OF	2	75	5	4	30	70	100
	-		PHYSICAL			2				200
		106	CHEMISTRY							
	3	CHE3MN	APPLIED ORGANIC	3	75	5	4	30	70	100
		206	CHEMISTRY							
		200								

(*Students who are opting for a single minor pathway can choose any two set of minors from groups 1-7)

GROUPING OF VOCATIONAL MINOR COURSES IN CHEMISTRY

(Title of the Vocational Minor: CHEMISTRY IN TECHNOLOGY)

The minor courses given below should not be offered to students who have taken chemistry as the major discipline. They should be offered to students from other major discipline only

Group	Sl.	Course	Title	Seme	Total	Hrs/	Cre		Marks	5
No.	No.	Code		ster	Hrs	Week	dits	Inte rnal	Exte rnal	Total
1			INDUST	RIAL C	CHEMIS	STRY				
	1	CHE1VN 101	INTRODUCTION TO INDUSTRIAL CHEMISTRY	1	75	5	4	30	70	100
	2	CHE2VN 101	PERSPECTIVES OF INDUSTRIAL CHEMISTRY	2	75	5	4	30	70	100
	3	CHE3VN 201	INDUSTRIAL POLLUTION AND CONTROL	3	75	5	4	30	70	100
	4	CHE8VN 301	INDUSTRIAL QUALITY MANAGEMENT	8	60	4	4	30	70	100
2			POLY	MER CH	IEMIST	RY				
	1	CHE1VN 102	INTRODUCTION TO POLYMER CHEMISTRY	1	75	5	4	30	70	100
	2	CHE2VN 102	COMMERCIAL POLYMERS	2	75	5	4	30	70	100
	3	CHE3VN 202	PLASTICS AND FIBER TECHNOLOGY	3	75	5	4	30	70	100
	4	CHE8VN 302	POLYMERS IN I NDUSTRY	8	60	4	4	30	70	100

(i). Students in Single Major pathway can choose course/courses from any of the Minor/ Vocational Minor groups offered by a discipline other than their Major discipline.

- (ii).Students in Major with Multiple Disciplines pathway can choose all the three courses from any one of the Minor/ Vocational Minor groups offered by any discipline, other than his Major discipline as one of the multiple disciplines.
- (iii). Students in Major with Minor pathway can choose all the courses from any two Minor groups offered by any discipline. Students in Major with Vocational Minor pathway can choose all the courses from any two Vocational Minor groups offered by any discipline. If the students choose any two Vocational Minor groups in Chemistry as given above, then the title of the Vocational Minor will be Chemistry in Technology

Sem	Course		Total	Hours/			Marks	
ester	Code	Course Title	Hours	Week	Credits	Inter nal	Exter nal	Total
1	CHE1FM 105	MULTI-DISCIPLINARY COURSE 1 – ENVIRONMENTAL CHEMISTRY	45	3	3	25	50	75
2	CHE2FM 106	MULTI-DISCIPLINARY COURSE 2 – CHEMISTRY IN DAILY LIFE	45	3	3	25	50	75
3	CHE3FV 108	VALUE-ADDED COURSE 1 – CHEMISTRY OF CONSUMER PRODUCTS	45	3	3	25	50	75
4	CHE4FV 110	VALUE-ADDED COURSE 2 – SOLID WASTE MANAGEMENT	45	3	3	25	50	75
		SKILL ENHANCEMENT COU	RSE 2*					
5	CHE5FS 112	CHEMISTRY IN EVERYDAY LIFE	45	3	3	25	50	75
	CHE5FS 113	CHEMISTRY OF COSMETICS	45	3	3	25	50	75

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN CHEMISTRY

*Among the two Skill Enhancement Courses, one course can be selected in the Fifth semester

		SKILL ENHANCEMENT COU	VRSE 3*					
6	CHE6FS 114	ANALYTICAL TECHNIQUES IN WATER QUALITY ASSESMENT	45	3	3	25	50	75
	CHE6FS 115	SCIENTIFIC COMMUNICATION, PUBLIC OUTREACH AND ENTREPRENEURIAL SKILLS	45	3	3	25	50	75

*Among the two Skill Enhancement Courses, one course can be selected in the Sixth semester

COURSE STRUCTURE FOR BATCH A1(B2) IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Chemistry (Major A)

B1: 68 credits in Major B B2: 53 credits in Major B

A2: 53 credits in Chemistry (Major A)

B2: 33 Creaus in Mic

The combinations available to the students: (A1 & B2), (B1 & A2) Note: Unless the batch is specified, the course is for all the students of the class

SE			ТОТА	HOU			MAR	KS
ME ST ER	COURS E CODE	COURSE TITLE	L HOU RS	RS/ WEE K	CREDI TS	INT ER NA L	EXT ERN AL	TOTAL
	CHE1CJ 101/CH E1MN1 00	CORE COURSE 1 IN MAJOR CHEMISTRY-INORGANIC CHEMISTRY - I	75	5	4	30	70	100
1	BBB1CJ 101	CORE COURSE 1 IN MAJOR B –	60/75	4/5	4	30	70	100
1	CHE1CJ 102/CH E2CJ10 2/ CHE2M N106	CORE COURSE 2 IN MAJOR CHEMISTRY- FUNDAMENTALS OF PHYSICAL CHEMISTRY (FOR BATCH A1 ONLY)	75	5	4	30	70	100

			1					
	ENG1F A 101(2)	ABILITY ENHANCEMENT COURSE 1 – ENGLISH	60	4	3	25	50	75
		ABILITY ENHANCEMENT COURSE 2 – ADDITIONAL LANGUAGE	45	3	3	25	50	75
	CHE1F M105	MULTI-DISCIPLINARY COURSE 1 IN CHEMISTRY- ENVIRONMENTAL CHEMISTRY (FOR BATCH A1 ONLY)	45	3	3	25	50	75
		TOTAL		24/ 25	21			525
	CHE2CJ 101/ CHE2M N 100	CORE COURSE 3 IN MAJOR CHEMISTRY-PHYSICAL CHEMISTRY – I: STATES OF MATTER	75	5	4	30	70	100
	BBB2CJ 101	CORE COURSE 2 IN MAJOR B	60/75	4/5	4	30	70	100
	BBB2CJ 102 / BBB1CJ 102	CORE COURSE 3 IN MAJOR B - (FOR BATCH B2 ONLY)	60/ 75	4/ 5	4	30	70	100
2	ENG2F A 103(2)	ABILITY ENHANCEMENT COURSE 3 – ENGLISH	60	4	3	25	50	75
		ABILITY ENHANCEMENT COURSE 4 – ADDITIONAL LANGUAGE	45	3	3	25	50	75
	CHE2F M106/C HE3FM 106	MULTI-DISCIPLINARY COURSE 2 IN CHEMISTRY- CHEMISTRY IN DAILY LIFE	45	3	3	25	50	75
		TOTAL		23 - 25	21			525
3	CHE3CJ 201	CORE COURSE 4 IN MAJOR CHEMISTRY-THEORETICAL CHEMISTRY – I: BASIC QUANTUM CHEMISTRY	60	4	4	30	70	100

	CHE3CJ 202 / CHE3M N 200	CORE COURSE 5 IN MAJOR CHEMISTRY-ORGANIC CHEMISTRY - I	75	5	4	30	70	100
	BBB3CJ 201	CORE COURSE 4 IN MAJOR B	60/75	4/5	4	30	70	100
	BBB3CJ 202	CORE COURSE 5 IN MAJOR B	60/75	4/5	4	30	70	100
	BBB3FM106 /MULTI-DISCIPLINARYBBB2FCOURSE 1 IN BM106VALUE-ADDED COURSE 1 IN		45	3	3	25	50	75
	CHE3F V 108	VALUE-ADDED COURSE 1 IN CHEMISTRY-CHEMISTRY OF CONSUMER PRODUCTS (FOR BATCH A1 ONLY)	45	3	3	25	50	75
		TOTAL		23 - 25	22			550
	CHE4CJ 203	CORE COURSE 6 IN MAJOR CHEMISTRY- INORGANIC CHEMISTRY - II	75	5	4	30	70	100
		CORE COURSE 6 IN MAJOR B	60/75	4/5	4	30	70	100
	CHE4CJ 204	CORE COURSE 7 IN MAJOR CHEMISTRY- ORGANIC CHEMISTRY - II (FOR BATCH A1 ONLY)	75	5	4	30	70	100
4	CHE4F V 110	VALUE-ADDED COURSE 2 IN CHEMISTRY- SOLID WASTE MANAGEMENT	45	3	3	25	50	75
	BBB4F V 110	VALUE-ADDED COURSE 1 IN B	45	3	3	25	50	75
	CHE4F S 113/CH E5FS11 3	SKILL ENHANCEMENT COURSE 1 IN CHEMISTRY- CHEMISTRY OF COSMETICS	45	3	3	25	50	75
		TOTAL		23/ 24	21			525

	CHE5CJ 302/ CHE6CJ 308	CORE COURSE 8 IN MAJOR CHEMISTRY INORGANIC CHEMISTRY - III	75	5	4	30	70	100
		CORE COURSE 7 IN MAJOR B -	60/75	4/5	4	30	70	100
	CHE5CJ 301/CH E6CJ30 7	CORE COURSE 9 IN MAJOR CHEMISTRY THEORETICAL CHEMISTRY - II- GROUP THEORY AND MOLECULAR SPECTROSCOPY (FOR BATCH A1 ONLY)	60	4	4	30	70	100
5		ELECTIVECOURSE 1 IN MAJOR CHEMISTRY*	60	4	4	30	70	100
		ELECTIVECOURSE 1 IN MAJOR B *	60	4	4	30	70	100
	BBB5F S 112 / BBB4F S 112	SKILL ENHANCEMENT COURSE 1 IN B	45	3	3	25	50	75
		TOTAL		24/ 25	23			575
	CHE6CJ 309/CH	CORE COURSE 10 IN MAJOR		5	4	30	70	100
	E5CJ30 3	CHEMISTRY- ORGANIC CHEMISTRY – III	75	5	4	50	70	100
	E5CJ30		60/75	4/5	4	30	70	100
	E5CJ30	CHEMISTRY – III						
6	E5CJ30 3 BBB6CJ	CHEMISTRY – III CORE COURSE 8 IN MAJOR B – CORE COURSE 9 IN MAJOR B –	60/75	4/5	4	30	70	100
6	E5CJ30 3 BBB6CJ	CHEMISTRY – III CORE COURSE 8 IN MAJOR B – CORE COURSE 9 IN MAJOR B – (FOR BATCH B2 ONLY) ELECTIVECOURSE 2 IN	60/ 75 60	4/5	4	30 30	70 70	100

	CHE6CJ 349	INTERNSHIP IN MAJOR CHEMISTRY (CREDIT FOR INTERNSHIP TO BE AWARDED ONLY AT THE END OF SEMESTER 6)	60		2	50	-	50
		TOTAL		24/ 25	25			625
	ТО	TAL CREDITS FOR THREE YEA	RS		133			3325
FOR	BATCH A	1(B2), THE COURSE STRUCTURE	IN SEME	ESTERS	7 AND 8	IS TH	E SAMI	E AS FOR
PATHWAYS 1-4, EXCEPT THAT THE NUMBER OF THE CORE AND ELECTIVE		CTIVE	COUR	SES IS IN				
CONTINUATION OF THE NUMBER OF COURSES IN THE TWO CATEGORIES COMPLETED AT								
THE END OF SEMESTER 6.								

* Choose any one elective course each in Major Chemistry from the course basket of four elective courses in Chemistry in semester 5 and four elective courses in Chemistry in semester 6, as listed above in the two tables of elective courses. Choose any one elective course each in Major B from the course basket of elective courses in Major B in semester 5 and semester 6.

CREDIT DISTRIBUTION FOR BATCH A1(B2)

Semester	Major Courses in Chemistry	General Foundation Courses in Chemistry	Internship/ Project in Chemistry	Major Courses in B	General Foundation Courses in B	AEC	Total
1	4 + 4	3	-	4	-	3 + 3	21
2	4	3	-	4 + 4	-	3 + 3	21
3	4 + 4	3	-	4 + 4	3	-	22
4	4 + 4	3 + 3	-	4	3	-	21
5	4 + 4 + 4	-	-	4 + 4	3	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total for	48	18	2	44	9	12	133
Three Years		68		5	53	12	133
				I		1	
	Major	Minor					
	Courses in Chemistry	Courses					
7	4 + 4 + 4 + 4 + 4 + 4 + 4	-			-	-	20
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24
		* In	stead of three	Major courses	•		
Total for Four	88 + 12 = 100	12					177

IN PATHWAY 5: DOUBLE MAJOR

COURSE STRUCTURE FOR BATCH B1(A2) IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Chemistry (Major A)

B1: 68 credits in Major B B2: 53 credits in Major B

A2: 53 credits in Chemistry (Major A)

The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the batch is specified, the course is for all the students of the class

SE			то	HOU			MAR	KS
ME ST ER	COURS E CODE	COURSE TITLE	TAL HO URS	RS/ WEE K	CRE DITS	INT ER NA L	EX TE RN AL	TOTA L
	CHE1CJ 101/ CHE1M N 100	CORE COURSE 1 IN MAJOR CHEMISTRY- INORGANIC CHEMISTRY - I	75	5	4	30	70	100
	BBB1CJ 101	CORE COURSE 1 IN MAJOR B –	60/ 75	4/5	4	30	70	100
	BBB1CJ 102 / BBB2CJ 102	CORE COURSE 2 IN MAJOR B – (FOR BATCH B1 ONLY)	60/ 75	4/ 5	4	30	70	100
1	ENG1F A 101(2)	ABILITY ENHANCEMENT COURSE 1 – ENGLISH	60	4	3	25	50	75
		ABILITY ENHANCEMENT COURSE 2 – ADDITIONAL LANGUAGE	45	3	3	25	50	75
	BBB1F M 105	MULTI-DISCIPLINARY COURSE 1 IN B – (FOR BATCH B1 ONLY)	45	3	3	25	50	75
		TOTAL		23 – 25	21			525
2	CHE2CJ 101/CH E2MN1 00	CORE COURSE 2 IN MAJOR CHEMISTRY- PHYSICAL CHEMISTRY – I: STATES OF MATTER	75	5	4	30	70	100
	BBB2CJ 101	CORE COURSE 3 IN MAJOR B	60/ 75	4/5	4	30	70	100

	CHE2CJ 102/CH E1CJ10 2/CHE2	CORE COURSE 3 IN MAJOR CHEMISTRY- FUNDAMENTALS OF PHYSICAL CHEMISTRY	75	5	4	30	70	100
	MN 106(FOR BATCH A2 ONLY)ENG2FABILITY ENHANCEMENTACOURSE 3 - ENGLISH103(2)ADILITY ENHANCEMENT		60	4	3	25	50	75
	103(2)	ABILITY ENHANCEMENT COURSE 4 – ADDITIONAL LANGUAGE	45	3	3	25	50	75
	CHE2F M106/C HE3FM 106	MULTI-DISCIPLINARY COURSE 2 IN CHEMISTRY- CHEMISTRY IN DAILY LIFE	45	3	3	25	50	75
		TOTAL		24/25	21			525
	CHE3CJ 201	CORE COURSE 4 IN MAJOR CHEMISTRY- THEORETICAL CHEMISTRY – I: BASIC QUANTUM CHEMISTRY	60	4	4	30	70	100
	CHE3CJ 202/ CHE3M N 200	CORE COURSE 5 IN MAJOR CHEMISTRY-ORGANIC CHEMISTRY - I	75	5	4	30	70	100
	BBB3CJ 201	CORE COURSE 4 IN MAJOR B	60/ 75	4/5	4	30	70	100
3	BBB3CJ 202	CORE COURSE 5 IN MAJOR B	60/ 75	4/5	4	30	70	100
	BBB3F M 106 / BBB2F M 106	MULTI-DISCIPLINARY COURSE 2 IN B –	45	3	3	25	50	75
	BBB3F V 108	VALUE-ADDED COURSE 1 IN B – (FOR BATCH B1 ONLY)	45	3	3	25	50	75
		TOTAL		23 – 25	22			550

	CHE4CJ 203	CORE COURSE 6 IN MAJOR CHEMISTRY -INORGANIC	75	5	4	30	70	100
		CHEMISTRY - II CORE COURSE 6 IN MAJOR B	60/ 75	4/5	4	30	70	100
		CORE COURSE 7 IN MAJOR B – (FOR BATCH B1 ONLY)	60/ 75	4/ 5	4	30	70	100
4	CHE4F V110	VALUE-ADDED COURSE 1 IN CHEMISTRY-SOLID WASTE MANAGEMENT	45	3	3	25	50	75
	BBB4F V 110	VALUE-ADDED COURSE 2 IN B –	45	3	3	25	50	75
	CHE4F S 113/CH E5FS11 3	SKILL ENHANCEMENT COURSE 1 IN CHEMISTRY- CHEMISTRY OF COSMETICS	45	3	3	25	50	75
		TOTAL		22 – 24	21			525
	CHE5CJ 304/CH E4CJ20 4	CORE COURSE 7 IN MAJOR CHEMISTRY-ORGANIC CHEMISTRY - II	75	5	4	30	70	100
		CORE COURSE 8 IN MAJOR B –	60/ 75	4/ 5	4	30	70	100
		CORE COURSE 9 IN MAJOR B – (FOR BATCH B1 ONLY)	60	4	4	30	70	100
5		ELECTIVECOURSE 1 IN MAJOR CHEMISTRY*	60	4	4	30	70	100
		ELECTIVECOURSE 1 IN MAJOR B *	60	4	4	30	70	100
	BBB5F S 112 / BBB4F S 112	SKILL ENHANCEMENT COURSE 1 IN B	45	3	3	25	50	75
		TOTAL		24/25	23			575

	CHE6CJ 308/CH E5CJ30 2	CORE COURSE 8 IN MAJOR CHEMISTRY- INORGANIC CHEMISTRY - III	75	5	4	30	70	100
		CORE COURSE 10 IN MAJOR B –	60/ 75	4/ 5	4	30	70	100
	CHE6CJ 307/CH E5CJ30 1	CORE COURSE 9 IN MAJOR CHEMISTRY- THEORETICAL CHEMISTRY – II GROUP THEORY AND MOLECULAR SPECTROSCOPY (FOR BATCH A2 ONLY)	60	4	4	30	70	100
6		SPECTROSCOPY AND GROUP THEORY (FOR BATCH A2 ONLY)						
		ELECTIVECOURSE 2 IN MAJOR CHEMISTRY*	60	4	4	30	70	100
		ELECTIVECOURSE 2 IN MAJOR B*	60	4	4	30	70	100
	BBB6F S 113	SKILL ENHANCEMENT COURSE 2 IN B – (FOR BATCH B1 ONLY)	45	3	3	25	50	75
	BBB6CJ 349	INTERNSHIP IN MAJOR B (CREDIT FOR INTERNSHIP TO BE AWARDED ONLY AT THE END OF SEMESTER 6)	60		2	50	-	50
		TOTAL		24/ 25	25			625
	TOTA	AL CREDITS FOR THREE YE	ARS		133			3325

TO CONTINUE TO STUDY CHEMISTRY IN SEMESTERS 7 AND 8, BATCH B1(A2) NEEDS TO EARN ADDITIONAL 15 CREDITS IN CHEMISTRY TO MAKE THE TOTAL CREDITS OF 68. SUPPOSE THIS CONDITION IS ACHIEVED, AND THE STUDENT OF BATCH B1(A2) PROCEEDS TO THE NEXT SEMESTERS TO STUDY CHEMISTRY. THE COURSE STRUCTURE IN SEMESTERS 7 AND 8 IS THE SAME AS FOR PATHWAYS 1 – 4, EXCEPT THAT THE NUMBER OF THE CORE AND ELECTIVE COURSES IS IN CONTINUATION OF THE NUMBER OF COURSES IN THE TWO CATEGORIES COMPLETED AT THE END OF SEMESTER 6, TAKING INTO ACCOUNT THE NUMBER OF COURSES IN CHEMISTRY TAKEN ONLINE TO EARN THE ADDITIONAL 15 CREDITS.

*Choose any one elective course each in Major Chemistry from the course basket of four elective courses in Chemistry in semester 5 and four elective courses in Chemistry in semester 6, as listed above in the two tables of elective courses. Choose any one elective course each in Major B from the course basket of elective courses in Major B in semester 5 and semester 6.

Semester	Major Courses in B	General Foundation Courses in B	Internship/ Project in B	Major Courses in Chemistry	General Foundation Courses in Chemistry	AEC	Total
1	4 + 4	3	-	4	-	3 + 3	21
2	4	-	-	4 + 4	3	3 + 3	21
3	4 + 4	3 + 3	-	4 + 4	-	-	22
4	4 + 4	3	-	4	3 + 3	-	21
5	4 + 4 + 4	3	-	4 + 4	-	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total for	48	18	2	44	9	12	133
Three Years		68		4	53	12	133
	Major	Minor					
	Courses in	Courses					
	В						
7	4 + 4 + 4 + 4 + 4 + 4 + 4	-			-	-	20
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24
		* In	stead of three l	Major courses		•	·
Total for Four Years	88 + 12 = 100	12					177

CREDIT DISTRIBUTION FOR BATCH B1(A2) IN PATHWAY 5: DOUBLE MAJOR

EVALUATION SCHEME

- The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks is from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks is from internal evaluation and 50 marks, from external evaluation.
- 2. The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit practical.
 - In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.
 - In 4-credit courses with 3-credit theory and 1-credit practical components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for practical. The practical component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.
- **3.** All the 3-credit courses (General Foundational Courses) in chemistry are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

Sl. No.	Nature o	of the Course	Internal Evaluation in Marks (about 30% of the total)		External Exam	Total Marks
			Open-ended module / Practical	On the other 4 modules	on 4 modules (Marks)	
1	4-credit course	only theory (5 modules)	10	20	70	100
2	4-credit course	Theory (4 modules) + Practical	20	10	70	100
3	3-credit course	only theory (5 modules)	5	20	50	75

1. MAJOR AND MINOR COURSES

Sl. No.	Components of Internal Evaluation of Theory Part of a Major / Minor		ernal Marks for Major / Minor C			
	Course	Theory	' Only	Theory -	+ Practical	
		4 Theory Modules	Open-ended Module	4 Theory Modules	Practical	
1	Test paper/ Mid-semester Exam	10	4	5	-	
2	Seminar/ Viva/ Quiz	6	4	3	-	
3	Assignment	4	2	2	-	
		20	10	10	20*	
	Total	30)	30		

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

* Refer the table in section 1.2 for the evaluation of practical component

1.2. EVALUATION OF PRACTICAL COMPONENT

The evaluation of practical component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of practical by the teacher-in-charge shall carry a weightage of 50%.
- Combining the rough and fair records into a single record for lab experiments is sufficient; there's no need to maintain them separately. The consolidated record can be submitted for evaluation at the end of the semester.
- The end-semester practical examination and viva-voce, and the evaluation of practical records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of practical courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who have done 75% of the experiments alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva-voce of practical component shall be as given below:

Sl. No.	Evaluation of Practical Component of Credit-1 in a Major / Minor Course	Marks for Practical	Weightage
1	Continuous evaluation of practical/ exercise performed in practical classes by the students. (Performance in the lab - 7 Marks, Attendance in the lab - 3 Marks)	10	50%
2	Evaluation of the Practical records submitted for the end semester viva–voce examination by the teacher-in- charge and additional examiner	3	15%
3	End-semester examination and viva-voce to be conducted by teacher-in-charge along with an additional examiner arranged internally by the Department Council	7	35%
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

Duration	Туре	Total No. of Questions	No. of	Marks for	Ceiling
			Questions to be	Each	of
			Answered	Question	Marks
2 Hours	Short Answer	10	8-10	3	24
	Paragraph/ Problem	8	6-8	6	36
	Essay	2	1	10	10
Total Marks					

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

2. INTERNSHIP

• All students should undergo Internship of 2-credits during the first six semesters in a firm, industry or organization, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.

- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.
- A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship.

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Chemistry or allied disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In BSc. Chemistry Honours programme, institute/ industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one national research institute, research laboratory and place of scientific importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- The institution at which the Internship will be carried out should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

2.2. EVALUATION OF INTERNSHIP

- The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme.
- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Evalu	Marks for Internship 2 Credits	Weightage	
1	Continuous evaluation of	Acquisition of skill set	10	40%
2	internship through interim presentations and reports by the committee internally	Interim Presentation and Viva-voce	5	
3	constituted by the Department Council	Punctuality and Log Book	5	
4	Report of Institute Visit/ Stud	5	10%	
5	End-semester viva-voce examination to be	Quality of the work	6	35%
6	conducted by the	Presentation of the work	5	
7	committee internally constituted by the Department Council	Viva-voce	6	
8	Evaluation of the day-to-da internship supervisor, and fir end semester viva-voce committee internally consti Council	8	15%	
		Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution / any other higher educational institution (HEI) / research centre/ training centre.
- The project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ST/OBC (non-creamy layer)/ Differently- Abled/Economically Weaker Section (EWS)/ other categories of candidates as per the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-credits instead of three core courses in Major in semester 8.
- The approved research centres of University of Calicut or any other university/ HEI can offer the Honours with Research programme. The departments in the affiliated colleges under University of Calicut, which are not the approved research centres of the University, should get prior approval from the University to offer the Honours with Research programme. Such departments should have minimum two faculty member with Ph.D., and they should also have the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the University/ College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.
- The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research and infrastructural facilities available.
- If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Chemistry or allied disciplines.
- 2. Project should be done individually.
- 3. Project work can be of experimental/ theoretical/ computational in nature.
- 4. There should be minimum 360 hrs. of engagement from the student in the Project work in Honours programme as well as Honours with Research programme

- 5. There should be minimum 13 hrs./ week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme
- 6. The various steps in project works are the following:
 - ➢ Wide review of a topic.
 - > Investigation on a problem in systematic way using appropriate techniques.
 - Systematic recording of the work.
 - > Reporting the results with interpretation in a standard documented form.
 - > Presenting the results before the examiners.
- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
- 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
- 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
- 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
- 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks is from internal evaluation and 210 marks, from external evaluation.
- The Project in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks is from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the University.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

Components of Evaluation of Project	Marks for the	Weightag
	Project	e
	(Honours/	
	Honours with	
	Research)	
Continuous evaluation of project work through	90	30%
interim presentations and reports by the		
committee internally constituted by the		
Department Council		
End-semester viva-voce examination to be	150	50%
conducted by the external examiner appointed by		
the university		
Evaluation of the day-to-day records and project	60	20%
report submitted for the end-semester viva-voce		
examination conducted by the external examiner		
Total Marks	300	

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours / Honours with Research programme)
1	Skill in doing project work	30
2	Interim Presentation and Viva-Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
	Total Marks	90

INTERNAL EVALUATION OF PROJECT

EXTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours / Honours with Research programme)
1	Content and relevance of the Project, Methodology, Quality of analysis, and Innovations of Research	50
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
	Total Marks	210

4. GENERAL FOUNDATION COURSES

• All the General Foundation Courses (3-credits) in Chemistry are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal Evaluation of a General	Internal Marks of a General Foundation Course of 3-credits in Chemistry	
	Foundation Course in Chemistry	4 Theory Modules	Open-ended Module
1	Test paper/ Mid-semester Exam	10	2
2	Seminar/ Viva/ Quiz	6	2
3	Assignment	4	1
		20	5
	Total		25

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

	e				
Duration		Total No. of Questions to	No. of	Marks for	Ceiling
	Туре		Questions to be	Each	of
		Questions	Answered	Question	Marks
	Short Answer	10	8-10	2	16
1.5 Hours	Paragraph/ Problem	5	4-5	6	24
	Essay	2	1	10	10
				Total Marks	50

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

5.LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.

• Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

S1.	Percentage of Marks	Descriptio	Letter	Grad	Range of	Class
No.	(Internal & External	n	Grad	e	Grade	
	Put Together)		e	Point	Points	
1	95% and above	Outstandin	0	10	9.50 - 10	First Class
		g				with Distinction
2	Above 85% and below 95%	Excellent	A+	9	8.50 – 9.	Distilletion
					49	
3	75% to below 85%	Very Good	Α	8	7.50 -	
					8.49	
4	65% to below 75%	Good	B+	7	6.50 -	
					7.49	First Class
5	55% to below 65%	Above	В	6	5.50 -	
		Average			6.49	
6	45% to below 55%	Average	С	5	4.50 -	Second
					5.49	Class
7	35% to below 45% aggregate	Pass	Р	4	3.50 -	Third Class
	(internal and external put				4.49	
	together) with a minimum of					
	30% in external valuation					
8	Below an aggregate of 35%	Fail	F	0	0-3.49	Fail
	or below 30% in external					
	evaluation					
9	Not attending the	Absent	Ab	0	0	Fail
	examination					

LETTER GRADES AND GRADE POINTS

- When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
- The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) =
$$\Sigma i$$
 (Ci x Gi) / Σi (Ci)

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

$$SGPA = \frac{Sum of the credit points of all the courses in a semester}{Total credits in that semester}$$

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
Ι	Course 1	3	А	8	3 x 8 = 24
Ι	Course 2	4	B+	7	4 x 7 = 28
Ι	Course 3	3	В	6	3 x 6 = 18
Ι	Course 4	3	0	10	3 x 10 = 30
Ι	Course 5	3	С	5	3 x 5 = 15
Ι	Course 6	4	В	6	4 x 6 = 24
	Total	20			139
	SGPA				139/20 = 6.950

ILLUSTRATION – COMPUTATION OF SGPA

• The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students.

CGPA for the three-year programme in CUFYUGP shall be calculated by the following formula.

$$CGPA = \frac{Sum of the credit points of all the courses in six semesters}{Total credits in six semesters (133)}$$

CGPA for the four-year programme in CUFYUGP shall be calculated by the following formula.

 $CGPA = \frac{Sum of the credit points of all the courses in eight semesters}{Total credits in eight semesters (177)}$

- The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.
- Based on the above letter grades, grade points, SGPA and CGPA, the University shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

CORE COURSES IN MAJOR

CALICUT UNIVERSITY – FOUR-YEAR UNDERGRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry				
Course Title	INORGANIC CHI	EMISTRY I			
Type of Course	MAJOR/MINOR				
Semester	I				
Academic Level	100-199				
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours
		per week	per week	per week	
	4	3	-	2	75
Pre-requisites	Fundamentals of pe Need for chemical b	Scope of chemistry, Interdisciplinary areas involving chemistry. Fundamentals of periodic properties of elements, Atoms and molecules, Need for chemical bonding and its types, Awareness on nature of experiments and health risk, hazard associated with chemicals, Mole concept			molecules, are of
Course Summary	This course explores the importance of chemistry as a central discipline of science. It introduces the periodic properties of elements, concept of chemical bonding and explanation of inorganic molecular structure using hybridization and MO theory. A few basic topics of the emerging area of Nanochemistry are also introduced in this course. The basic laboratory safety, concepts in volumetric analysis and related practical experiments are also covered.				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the role of chemistry in science and scientific research with emphasis on analytical data evaluation	U	С	Instructor- created exams/ Quizzes/Assignments
CO2	Conceptualize and predict chemical bonding, molecular structures using	An	Р	Instructor- created exams/ Quizzes/assignments

	dipole moment, hybridisation, and MO Theory			
CO3	extraordinary properties of	U	С	Instructor- created exams/
	nanomaterials and its applications.			Quizzes/Assignments
CO4	Apply the concepts of lab safety measurements and volumetric analysis	Ар	М	Instructor- created exams/ Assignments/problem solving
CO5	Enable students to develop analytical skills in inorganic quantitative volumetric analysis.	Ap	Р	Group work /Viva Voce// Observation of practical skill
* - Re	emember (R), Understand (U), Apply (A	Ap), Analyse	(An), Evaluate	(E), Create (C)
# - Fa	ctual Knowledge(F) Conceptual Know	ledge (C) Pro	cedural Knowl	edge (P) Metacognitive
Know	vledge (M)			_

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
			(45+30)	
Ι	Cl	HEMISTRY AS A SCIENCE DISCIPLINE &	8	17
		SCIENTIFIC ANALYSIS		
	1	Science- Chemistry as a branch of science, History of	1	
		chemistry, Involvement of chemistry in daily life		
		(Mention only)		
	2	Introduction to analytical chemistry, Classification of	1	
		analytical methods: Qualitative and Quantitative		
		analysis (Mention with examples)		
	3	Treatment of analytical data - Significant figures -	3	
		Accuracy - Precision - Methods of representing		
		Accuracy, Absolute error, Relative error, Types of		
		errors, Constant errors, Proportional errors, Correction		
		of determinate errors		
	4	Methods of representing Precision -Mean, Average	3	
		deviation, Standard deviation, Relative standard		
		deviation, Coefficient of variation, Variance,		
		Rejection of a result: Q test, Methods of least squares		
II	C	HEMICAL BONDING AND MOLECULAR	17	38
		STRUCTURE		
	5	Periodic Properties and their Periodic Trends: (a)	2	
		Atomic and Ionic radius (include isoelectronic species		
		in discussion) (b) Ionisation energy: (c) Electron		

		affinity (d) Electronegativity (Pauling, Mulliken		
		Allred & Rochow scales).		
	6	Classification of bonds: Ionic bond - Definition,	1	
	0		1	
		Factors affecting the formation of ionic bond.		
	7	Characteristics of ionic compounds. Lattice energy	2	
	/	Born Haber cycle - Born Lande equation (derivation	2	
		not needed) - Covalent –(Mention polar and non polar		
		compounds) and Coordinate bond	-	
	8	Dipole moment and its applications: (Prediction of	2	
		linearity and symmetry of polyatomic molecules,		
		Prediction of position of substituents in aromatic		
		compounds, Measurement of bond angle)		
	9	Covalent Bond, Lewis concept of covalent bond,	2	
		Atomic orbital overlap, Concept of covalency,		
		Variable covalency and Maximum covalency		
	10	Prediction of Covalent character in ionic bond using	1	
		Fajans rule. Prediction of Ionic character in Covalent		
		bond using Hannary Smidth equation.		
	11	Structure of molecules by the concept of	3	
		Hybridisation: NO_3^- , CO_3^{2-} , SO_4^{2-} , IF_7 , XeO_3 , XeO_4 ,		
		XeF ₂ , XeF ₄ , XeF ₆ , ClF ₃ , BrF ₅ , SF ₄		
	12	Introductory MO Theory: Homoatomic molecules in	4	
		N_2 and O_2 and their ions (comparison of bond order,		
		bond length and stability), MO Theory: Heteroatomic		
		molecules like NO, CO, HCl, HF, LiF.		
III		INTRODUCTION TO NANOMATERIALS	10	21
	13	Definition of Nanomaterials, Historical revolution of	2	
		Nanochemistry, Nanochemistry and		
		Nanotechnology, Classification of nanostructures		
		based on electron confinement (0D, 1D and 2D)		
	14	Synthesis of Nanomaterials: Bottom Up and Top	1	
		down approaches (Elementary idea with examples)		
	15	Metal nanoparticles (gold and silver nanoparticles),	2	
		Semiconductor nanoparticles (CdS and CdSe		
		nanoparticles), Metal oxide nanoparticles (zinc oxide,		
		iron oxide, silica and titania nanoparticles),		
		iron oxide, silica and titania nanoparticles), Nanocomposites, Nanoceramics (Definition with		
		Nanocomposites, Nanoceramics (Definition with		
		Nanocomposites, Nanoceramics (Definition with examples), Carbon Based Nanomaterials: Graphene,		
	16	Nanocomposites, Nanoceramics (Definition with examples), Carbon Based Nanomaterials: Graphene, Carbon Nanotubes, Fullerenes, Carbon dots	3	
	16	Nanocomposites, Nanoceramics (Definition with examples), Carbon Based Nanomaterials: Graphene, Carbon Nanotubes, Fullerenes, Carbon dots (elementary idea only)	3	
	16	Nanocomposites, Nanoceramics (Definition with examples), Carbon Based Nanomaterials: Graphene, Carbon Nanotubes, Fullerenes, Carbon dots (elementary idea only)Characteristics of Nanomaterials: Surface area to	3	

				,
		plasmon resonance), Electronic, Mechanical,		
		magnetic and catalytic properties (No deep discussion		
	17	is needed)		
	17	Applications of nanomaterials: Electronics (Batteries,	2	
		Solar cell), Biomedical (Drug Delivery) and		
		Environmental based applications (Water		
		Purification, Dye Removal) (General idea only)	10	
IV		DAMENTALS OF ANALYTICAL CHEMISTRY	10	22
	18	Lab safety measurements: Awareness of material	2	
		safety data sheet (MSDS), Safe storage and handling		
		of hazardous chemicals, Simple first aids; Electric		
		shocks, fire, Cut by glass and inhalation of poisonous		
	10	gas.		
	19	Accidents due to acids and alkalis, Burns due to	1	
		phenol and bromine, Disposal of waste chemicals,		
		Disposal of sodium and broken mercury thermometer,		
		-R and S phrases (elementary idea only), Personal		
	20	protective Equipment (PPE)		
	20	Mole concept - Equivalent mass - Methods of	2	
		expressing concentration: Weight percentage,		
		molality, molarity, normality, mole fraction, ppm and		
		millimoles - Numerical Problems related to basic		
	- 21	concepts.		
	21	Volumetric Analysis: Introduction - Primary and	3	
		secondary standards – Standard solutions – Theory of		
		titrations involving acids and bases,		
		Permanganometry, Dichrometry, Iodometry,		
		Iodimetry Precipitation and Complexometric		
	22	titrations.	2	
	22	Indicators: Theory of acid-base, redox, adsorption and	2	
		complexometric indicators. Double burette method of		
V	INODC	titration: Principle and advantages. ANIC CHEMISTRY PRACTICAL I-	20	
v	INUKG	VOLUMETRIC ANALYSIS	30	
	1			
	1	General Instructions: Use a safety coat, gloves,		
		shoes and goggles in the laboratory. For weighing		
		electronic balance must be used. Double burette		
		titration method may be used for titrations. Standard		
		solution must be prepared by the student. A minimum		
		of 7 experiments must be done from Section B and C.		

r	
	Section D is open-ended and the experiments can be
	selected by the teacher
	SECTION A
	Importance of lab safety – Burns, Eye accidents,
	Cuts, Gas poisoning, Electric shocks, Treatment of
	fires, Precautions and Preventive measures.
	Weighing using electronic balance, Preparation of
	standard solutions.
	SECTION B
	Neutralization Titrations
	1. Acidimetry and Alkalimetry: Strong acid Vs
	Strong base
	2. Acidimetry and Alkalimetry: Strong acid Vs
	Weak base
	SECTION C
	Redox Titrations
	1. Permanganometry: Estimation of $Fe^{2+}/FeSO_{4.}$
	7H2O/Mohr's salt
	2. Permanganometry: Estimation of Oxalic acid
	3. Permanganometry: Estimation of Calcium using
	std KMnO4
	4. Dichrometry: Estimation of Fe ²⁺ / FeSO ₄ . 7H2O
	/Mohr's salt
	5. Dichrometry: Estimation of Ferric iron
	6. Iodometry and Iodimetry: Estimation of Copper
	7. Iodometry and Iodimetry: Estimation of Iodine
	SECTION D
	Open Ended (Any two experiments are to be
	conducted. may be selected from the below list or
	the teacher can select related experiments)
	1. Determination of acetic acid content in vinegar
	by titration with NaOH.

	2. Determination of alkali content in antacid tablets	
	by titration with HCl.	
	3. Determination of available chlorine in bleaching	
	Powder.	
	4. Estimation of Cu in Brass	

References

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd, Hyderabad, 1999
- 2. George Gamow, One, Two, Three...Infinity: Facts and Speculations of Science, Dover
- 3. Publications, 1988.
- 4. Resonance Journal of Science Education, Indian Academy of Sciences.
- 5. Nature Chemistry, Nature Publishing Group.
- 6. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 7. D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical
- 8. Chemistry, 8th Edn., Brooks/Cole, Thomson Learning, Inc., USA, 2004.
- 9. B. R. Puri, L. R. Sharma, K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 10. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 11. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008
- 12. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 13. J. E. Huheey, E. A. Keitler, R. L. Keitler, *Inorganic Chemistry Principles of Structure and Reactivity*, 4th Edn., Pearson Education, New Delhi, 2013.
- C.N.R., Rao, A. Müller, and A.K. Cheetham, (Eds.), "Chemistry of Nanomaterials", Wiley – VCH. 2005
- 15. T., Pradeep, *A Textbook of Nanoscience and Nanotechnology*, McGrawhill, New Delhi, 2012.
- 16. M. A. Shah, Tokeer Ahmad, *Principles of Nanoscience and Nanotechnology*, Narosa Publishing House, New Delhi, 2010.
- 17. V. S. Muralidharan, A. Subramania, *Nano Science and Technology*, CRC Press, London.
- 18. R. H. Hill, D. Finster, *Laboratory Safety for Chemistry Students*, 1st Edn., Wiley, Hoboken, NJ, 2010.

Further Reading

- 1. H. Collins, T. Pinch, *The Golem: What Everyone Should Know about Science*, Cambridge University Press, Cambridge, 1993.
- 2. C.R. Kothari, Research Methodology: Methods and Techniques, 2nd Revised Edition,

New Age International Publishers, New Delhi, 2004.

- 3. http://www.vlab.co.in
- 4. http://nptel.iitm.ac.in
- 5. D. F. Shriver, P. W. Atkins, *Inorganic Chemistry*, 5rd Edn., Oxford University Press, New York, 2010.
- 6. M. C. Day, J. Selbin, *Theoretical Inorganic Chemistry*, East West Press, New Delhi, 2002.
- 7. G. L. Miessler, D A. Tarr, Inorganic Chemistry, Pearson, 2010
- 8. K.J. Klabunde (Ed.), "Nanoscale Materials in Chemistry", John Wiley & Sons Inc. 2001
- 9. G., Schmidt, Nanoparticles: From theory to applications –Wiley Weinheim 2004.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
C O 1	3			2	1	1	3				3	1	1
C O 2	2	2					2				2		1
C O 3	2		1	2	2	3	2			1	2	1	2
C O 4			3		2	2	2		1		1	1	1
C O 5			3		2	3	3		1		2	1	2

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/ Viva/ Seminar	Practical skill evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B. Sc. CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	PHYSICAL CHEMISTRY – I: STATES OF MATTER						
Type of Course	MAJOR/MINOR	MAJOR/MINOR					
Semester	II						
Academic Level	100-199	100-199					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
Pre-requisites	NCERT or equivalent	•	•		1		
Course Summary	Atoms and molecules form the matter that is recognisable for us in the real world, as gases, liquids and solids. Why would they exist as they are? And why would they behave as they do? This course is designed to introduce first year UG students, the physical chemistry of matter in different states of its existence through theory and laboratory experiments. The course explains the various types of interactions between atoms and molecules and their important role in physical and chemical characteristics of the different states of matter. The course introduces the theory and experimental methods that are commonly used to study the various states of matter.						

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the basic nature of real gases and understand interactions at molecular levels	U	С	Assignments/Quiz designed by the instructor
CO2	To recognise the significance of various interactions in condensed matter	U	С	Assignments/Quiz designed by the instructor

CO3	To analyse the physical properties of liquids through theory and practical experiments	An	Р	Seminars and exams			
CO4	To explain the regular, periodic arrangement of atoms in solids and appreciate the concept of unit cells	An	Р	Seminars/ exams			
CO 5	To evaluate and understand the importance of the X-ray diffraction technique for characterisation of crystalline solids	Ар	Р	Lab/Discussion/Ass ignments			
CO 6	To execute experiments to determine and tune the various colligative properties of dilute solutions	С	Р	Lab/Viva voce exams			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

Module	Unit	Content	Hrs (45+30)	Marks
Ι		GASEOUS STATE	15	33
	1	Kinetic theory of gasses: derivation	1	
	2	Maxwell-Boltzmann distribution of molecular velocities Average velocity, RMS velocity and most probable velocity (derivations not required)	2	
	3	Collision theory – Collision diameter- Collision number-Collision frequency - Mean free path – Molecular beams (Mention only)	2	
	4	Real gas- Deviation from ideal behavior- Compressibility factor – Virial equation and Virial coefficients- van der Waals equation of state (derivation required)-features of van der Waals equation - Expression of van der Waals equation in virial form and calculation of Boyle temperature - PV isotherms of real gasses – Andrews' experiments - Continuity of states - Isotherm of van der Waals equation	6	

		~		
	5	Critical phenomena - Critical constants - Relationship between critical constants and van der Waals constants - Experimental determination of critical constants - Supercritical carbon dioxide and its applications.	4	
II		LIQUID STATE	8	17
	6	Discussion of different types (with suitable examples) of molecular interactions- dipole- dipole, dipole-induced dipole, induced dipole- induced dipole interactions, Lennard-Jones 6-12 potential.	2	
	7	Properties of liquids- Vapour pressure, Refractive index, Surface tension- Interfacial tension and viscosity - Poiseuille's equation – Explanation of these properties on the basis of intermolecular forces.	3	
	8	Hydrogen bonding in water and other polar molecules, its relevance in biological systems.	2	
	9	Liquids on solid surfaces- Hydrophobic and Hydrophilic, Superhydrophilic and Superhydrophobic surfaces- simple explanation by using the water drop contact angles on surfaces	1	
III		SOLID STATE	15	33
	10	Crystalline and amorphous solids- atomic and molecular solids- nucleation and growth of crystals.	2	
	11	Crystalline Materials – Periodicity- Types of Close packing and packing fraction.	1	
	12	Space Lattice - Unit cell (use models)- Lattice planes and Miller indices (use models) - 7 crystal systems- 14 Bravais lattices- Types of cubic crystals and their planes- Distance formula for cubic systems- Calculation of crystal density (Use of software like Crystal viewer is recommended).	4	
	13	X-ray diffraction- Bragg's law (derivation)- Powder and single crystal X-ray diffraction methods, Atomic scattering factor, Structure factor,	3	
	14	Systematic absences for simple, face centered, and body centered cubic crystals, Analysis of XRD patterns of NaCl, KCl and CsCl. Basic idea of electron and neutron diffraction.	3	
	15	Structural transitions in TiO ₂ - anatase, rutile and brookite phases	1	
	16	Concepts of melting point/boiling point and molecular/atomic/ionic interactions, Examples: CO ₂ , N ₂ , H ₂ O, NH ₃ , NaCl, TiO ₂	1	
IV		SOLUTIONS	7	15

	17	Solubility of gases in liquids – Henry's law and its applications	1	
	18	Colligative properties - Relative lowering of vapour pressure	1	
	19	Colligative properties- Elevation in boiling point and depression in freezing point	1	
	20	Colligative properties- Osmotic pressure - Laws of osmotic pressure - Reverse osmosis and its technological relevance	1	
	21	Determination of molecular mass using colligative properties	1	
	22	Solid Solutions: Substitutional and interstitial solid solutions, Differences between Alloys, Mixtures and Composites. Colloids: Dispersed phase and dispersing medium, Sol, Emulsion, Foam, and Aerosol, Tyndall effect, Nephelometry	2	
V		PHYSICAL CHEMISTRY PRACTICALS	30	
		A minimum of 5 practical experiments out of which ONE EACH from sections 1, 2 and THREE from section 3 must be performed and reported. For plots/graphs, suitable softwares may be used and printed hard copies may be presented. Practical records may be in handwritten or computer-typed printed form.		
		 Section 1 1. Determination of cryoscopic constant (K_t) of solid solvent using a solute of known molecular mass. (Solvent: Naphthalene, biphenyl Solute: Naphthalene, biphenyl, 1,4-dichlorobenzene, diphenylamine) 	3	
		 2. Determination of molecular mass of the solute using a solvent of known cryoscopic constant (K_r). (Solvent: Naphthalene, biphenyl Solute: Naphthalene, biphenyl, 1,4-dichlorobenzene, diphenylamine) 	3	
		Section 2		
		 Determination of molal transition point depression constant (K₃) of salt hydrate using solute of known molecular mass. (Salt hydrates: Na₂S₂O₃.5H₂O, CH₃COONa.3H₂O. Solutes: Urea, Glucose) Determination of molecular mass of the solute using a 	3	
		solvent of known molal transition point depression constant (K ₁). (Salt hydrates: Na ₂ S ₂ O ₃ .5H ₂ O, CH ₃ COONa.3H ₂ O. Solutes: Urea, Glucose)	3	

Section 3		
 Determination of viscosity of various liquids using Ostwald's viscometer. 	3	
6. Study of glycerine-water system and determination of percentage of glycerine using viscometer [plot composition (c) <i>versus</i> time of flow x density of the	3	
 solution (td)]. 7. Determination of the surface tension of a liquid or a dilute solution (NaCl / surfactant) using a stalagmometer (drop number method). 	3	
8. Determination of composition of glycerine-water mixture by refractive index method.	3	
 Determination of refractive indices of KCl solutions of different concentrations and unknown concentration of KCl solution. 	3	
10. Indexing powder XRD patterns and determination of unit cell parameters of simple and/or bcc and/or fcc systems (Instructors must provide the powder XRD patterns and ask students to index it and calculate unit cell parameters)	3	
	3	
References:		
Module I o IV		
 Physical Chemistry: Thermodynamics, Structure and Change, 10th Edition, P. Atkins and J. de Paula, (W. H Freeman and Company, New York) D. A. McQuarrie, J. D. Simon, Physical Chemistry – A Molecular Approach, (Viva, 2001.) Solid State Chemistry and its Applications, 2nd Edition, A R West, (Wiley, 2014) 		
 Module V 4. Findlay's Practical Physical Chemistry, Ninth Edition, Revised and Edited by B P Levitt, (Longman, London, 1973) 5. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008 6. R. C. Das, B. Behra, Experiments in Physical Chemistry, Tata McGraw Hill, New Delhi, 1983. 		

Further reading
7. 1. B. R. Puri, L. R. Sharma, M. S. Pathania,
Principles of Physical Chemistry, 46th Edn., Vishal
Publishing Company, New Delhi, 2013.
8. G. M. Barrow, Physical Chemistry, 5th Edn., Tata
McGraw Hill Education, New Delhi, 2006.
9. F. Daniels, R. A. Alberty, Physical Chemistry, 5th
Edn., John Wiley and Sons, Canada, 1980.
10. D. P. Shoemaker, C. W. Garland, Experiments in
Physical Chemistry, McGraw-Hill Book Company, New
York, 1962.
11. W. G. Palmer, Experimental Physical Chemistry,
Cambridge University Press, Cambridge, 2009

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	-	-	3	2	3	2	2	-	2	-	1
CO 2	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 3	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 4	3	2	-	-	3	3	3	2	1	-	1	-	1
CO 5	3	2	2	1	3	3	3	2	1	-	3	-	1
CO 6	2	-	3	3	3	3	3	2	1	2	3	2	1

Correlation Levels:

Level	Correlation
-	Nil

1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment /viva	Practical skill evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark			\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDERGRADUATE PROGRAMME (CU-FYUGP)

B. Sc. CHEMISTRY

Programme	B. Sc. Chemistry						
Course Title	THEORETICAL CHEMISTRY I – BASIC QUANTUM CHEMISTRY						
Type of Course	MAJOR						
Semester	III						
Academic Level	200 - 299						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	4	-	-	60		
Pre-requisites	 Early atom models – John Dalton's atomic theory, the discharge tube experiment and discovery of electrons, the plum-pudding model, the gold foil experiment and the invention of the nucleus, the nuclear model of the atom, failures of the nuclear model. Mathematical prerequisites - basic understanding of differentiation, partial differentiation, integration, technique of separation of variables. Cartesian and spherical polar coordinate systems. 						
Course Summary	 VSEPR theory, postulates and applications Properties of bulk matter can be examined from the viewpoint of thermodynamics. But it is essential to know how these properties stem from the behaviour of individual atoms and molecules. The laws of quantum mechanics decide the properties of the micro-world. The course introduces the basic principles of quantum mechanics and explains how quantum mechanics has revolutionised our understanding of atomic structure and chemical bonding. 						

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used

CO1	<i>recognize</i> the importance and the impact of quantum revolution in science.	R	F	Assignment
CO2	<i>identify</i> the wave functions of hydrogen atom as atomic orbitals.	U	С	Class tests/Viva
CO3	<i>apply</i> the concept of atomic orbitals in chemical bonding (the mixing of wave functions of the two combining atoms).	Ар	С	Seminar/ Class tests
CO4	<i>relate</i> the concept of hybridization as linear combination of atomic orbitals of the same atom.	An	Р	Class tests/Assignment
CO5	<i>instill</i> an atomic/molecular level philosophy in the minds of the students.	С	М	Viva
	emember (R), Understand (U), Apply			
	ctual Knowledge(F) Conceptual Know /ledge (M)	viedge (C) Pro	cedural Knowle	age (P) Metacognitive

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
			(45 +30)	
Ι	Th	e Quantum revolution and its early impact in atomic structure	8	21
	1	Experiments which led to the development and generalisation of quantum theory – black body radiation, Planck's quantum hypothesis, photoelectric effect, Einstein's generalisation of quantum theory	3	
	2	Atomic model partly based on quantum theory – Bohr's theory of the atom, calculation of Bohr radius, velocity and energy of an electron.	3	
	3	Atomic spectra of hydrogen and explanation using Bohr's theory; Limitations of Bohr's theory; Louis de Broglie's matter waves – wave-particle duality; Davisson and Germer experiment.	2	
	Sectio	ons from References: Section A		

II	I	ntroductory Quantum Chemistry and the Quantum Mechanical Model of the Atom	22	42
	4	Heisenberg's uncertainty principle and the need of quantum mechanics for the micro world; <i>Postulates of</i> <i>quantum mechanics - Wave function postulate</i> , Physical significance of the wave function, The Born interpretation of the wave function and probability density. Well behaved functions, orthonormal functions	2	
	5	<i>Time-dependent Schrodinger equation postulate</i> – Deduction of Time independent Schrödinger wave equation for conservative systems. Laplacian and Hamiltonian operators.	2	
	6	<i>Operator postulate</i> - linear and Hermitian operators, eigenfunctions and eigenvalues of an operator. <i>Eigenvalue postulate</i> . Hermitian operators have real eigenvalues.	2	
		Average value or expectation value postulate		
	7	Applications of time independent Schrödinger wave equation	4	
		<i>Particle in a one dimensional box with infinite potential</i> <i>energy walls</i> – derivation of wave functions and energy, normalization of wave function, plots of wave functions and probability densities, average value of position, average value of momentum, calculation of energy levels and absorption band in butadiene using the particle in a box model.		
	8	Particle in a one dimensional box with finite potential energy walls (derivation not required) – Introduction to tunnelling, Principle of Scanning Tunnelling Microscopy (STM)	1	
	9	<i>Particles in a three dimensional box</i> – separation of variables and derivation of wave functions and energy, degeneracy of states in a cubic box.	2	
	10	<i>Hydrogen atom</i> - Hamiltonian operator of H-like systems, separation of nuclear and electronic motions - The Born- Oppenheimer approximation, The Schrodinger equation in spherical polar coordinates, separation of variables	3	
	11	Wave functions or atomic orbitals, radial and angular parts of atomic orbitals. Quantum numbers (n, l, m). Radial functions and their plots, Radial distribution functions and	3	

		their plots, Angular functions and their plots (1s, 2s and 2p _z only).		
	12	The Stern - Gerlach experiment and the concept of electron spin, spin quantum number, spin orbitals (elementary idea only). Antisymmetric wave functions and Pauli's exclusion principle.	2	
	13	Exact solution of the Schrodinger equation is impossible for multi-electron atoms - Need for approximation methods.	1	
	Sectio	ons from References: Section A		
III		Bonding in Diatomic Molecules	12	21
	14	Hamiltonian operator of H_2 molecule - Born-Oppenheimer approximation, approximate theories of chemical bonding – (ways of mixing of wave functions of different atoms).	1	
	15	Valence bond theory of H_2 molecule - trial wave function, improvements by including delocalisation of electrons, mutual screening and partial ionic character. Potential energy profile of H_2 molecule formation - equilibrium geometry, Comparison of theoretical and experimental energy profiles.	3	
	16	Molecular orbital theory of H_2 molecule –linear combination of atomic orbitals (LCAO), bonding and antibonding molecular orbitals, wave function as product of one electron functions, electron distribution in bonding and antibonding molecular orbitals, overlap integral, normalisation of bonding and antibonding molecular orbitals.	3	
	17	MO diagrams of homonuclear diatomic molecules – He ₂ , Li ₂ , Be ₂ , B ₂ , C ₂ , N ₂ , O ₂ , F ₂ ; Bond order, stability and magnetic properties of these molecules.	2	
	18	MO diagrams of heteronuclear diatomic molecules - CO and NO; Bond order.	2	
	19	Comparison of VB and MO theories.	1	
	Sectio	ons from References: Section B		
IV		Bonding in Polyatomic Molecules	6	14
	20	Concept of Hybridization: Need of hybridization, Definition (<i>mixing of wave functions of the same atom</i>)	1	

	21	LCAO of the central atom – coefficients of atomic orbitals in the linear combination of sp (BeH ₂), sp ² (BH ₃) and sp ³ (CH ₄) hybridization (derivation not required)	4	
	22	1		
	Sectio	ons from References: Section B		
V	Open	Ended Module: Learning through problem solving and plots	12	
	1	 Plots of wave functions of particle in a box using excel or other software Plots of angular parts of atomic orbitals using any freeware Problem solving sections Connections with inorganic chemistry topics 		
	Sectio	ons from References: Section A & Section B		

Books and References:

Section A

1. D. A. McQuarrie, J. D. Simon, Physical Chemistry – A Molecular Approach, Viva, 2001.

2. I. N. Levine, Quantum Chemistry, 6th Edn., Pearson Education Inc., 2009.

3. R.K. Prasad, Quantum Chemistry, 3rd Edition, New Age International, 2006.

Section B

1. James E. Huheey, Ellan A. Keiter, Richard L. Keiter, *Inorganic Chemistry – Principles of Structure and Reactivity*, 4th Edn., Harper Collins, 1993.

2. D. A. McQuarrie, J. D. Simon, *Physical Chemistry – A Molecular Approach*, Viva, 2001.

Further reading

1. F.L. Pilar, Elementary Quantum Chemistry 2 ND 2nd Edn., Dover, 1990.

2. P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics, 4th Edn., Oxford University Press, 2005

3. Donald, A. McQuarrie, *Quantum Chemistry*, University Science Books, 1983 (first Indian edition, Viva books, 2003)

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	-	-	-	2	2	3			1	2		2
CO 2	2	3	-	-	2	2	3				1		2
CO 3	_	_	1	_	2	2	3			1	3		2
CO 4	-	_	2	3	3	3	2				2		2
CO 5	-	1	-	-	3	3	3		2	2	2		3

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment/viva	Practical skill Evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry								
Course Title	ORGANIC CHEMISTRY 1								
Type of Course	MAJOR /MINOR	MAJOR /MINOR							
Semester	III	III							
Academic Level	200 - 299								
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours				
	4	3	-	2	75				
Pre-requisites	Basics of organic chemistry-Functional groups, Homologous series, Nomenclature and isomerism								
Course Summary	This course explores basics of organic chemistry reaction mechanism, Reactions and mechanism of important functional groups and stereochemistry								

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the basics of Organic chemistry	U	С	Test /Seminar
CO2	To understand the basic concepts of reaction mechanisms	U	р	Discussion/ Assignment
CO3	To recognize the various types of organic reactions and reaction intermediates	An	Р	Quizzes/Test
CO4	To realise the importance of stereoisomerism, optical activity and chirality	Ap	Р	Discussion/Seminar /Assignment
CO5	To enable the students to improvise Molecular models	Ар	Р	Assignment/Test

CO6	To empower students in various	Ap	Р	Lab work/Viva					
	separation and purification								
	techniques								
* - Ren	nember (R), Understand (U), Apply	(Ap), Analyse	e (An), Evaluate	(E), Create (C)					
# - Fact	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowle	Knowledge (M)								

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
Ι		Introduction	12	26
	1	IUPAC Nomenclature of multifunctional acyclic and cyclic compounds. Structural isomerism.	2	
	2	2		
	3	Localised and delocalised bonding. Hydrogen bonding, effect of hydrogen bonding on physical and chemical properties of compounds	1	
	4	Organic acids and bases	2	
	5	Basics of MO theory as applied to organic molecules -Ethylene and Buta-1,3-diene.	3	
	6	Aromaticity-Huckel's rule for aromaticity (Benzenoid compounds)	2	
II		Organic reaction mechanisms	12	26
	7	Types of bond fission-Homolytic and Heterolytic fission	1	
	8	Arrow formalism used in reaction schemes.	1	
	9	Electrophiles and Nucleophiles	1	
	10	Electron displacement Effects: Inductive effect and Field effect, Steric effect- Acidity and basicity of organic compounds based on Field effect and steric effect.	2	
	11	Electromeric effect, Mesomeric effect	2	
	12	Hyperconjugation- Stability of alkenes.	1	
	13	Reactive intermediates: Structure, formation and stability of carbocations, carbanions, free radicals, carbenes and nitrenes.	3	
	14	Pericyclic reactions and its classifications	1	

III		Stereochemistry-I	14	30
	15	Stereoisomerism: Conformational isomerism and configurational isomerism. Representation of stereostructures of organic molecules using Flying wedge, Fischer, Sawhorse and Newmann projections.	3	
	16	Inter conversion of different projections of L-tartaric acid and 3- chloro-2-butanol.	3	
	17	Conformational Isomerism – Conformational analysis of Ethane, n- butane and cyclohexane with PE diagram.	3	
	18	Conformation of mono substituted cyclohexanes. Relative stability of conformations.	2	
	19	Configurational isomerism: Geometrical isomerism in alkenes, cycloalkanes and oximes. Cis-trans, Syn-Anti and E-Z notations, sequence rule.	3	
IV		Purification and Characterization Techniques	7	16
	20	Distillation- Simple, fractional, steam and vacuum distillations	2	
	21	Recrystallisation, sublimation, solvent extraction.	2	
	22	Chromatography, stationary phase, mobile phase, Rf values, - TLC, Column chromatography, HPLC and GC (basic concepts only).	3	
V		Practicals	30	
	1.	Introduction to organic lab	4	
	2	 Distillation of Aniline, Distillation of Limonene (from orange peels) Purification of organic compounds by crystallization using the following solvents: a. Water b. Alcohol Sublimation of a dicarboxylic acid/Naphthalene Molecular model construction and conformation of ethane Molecular model construction of Ethylene or Acetylene Molecular model construction of acetaldehyde and Cyclohexane. 	20	
	3	Open ended	6	

References

1. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

3. Kalsi, P. S., Stereochemistry Conformation and Mechanism; 8thEdn, New Age International, 2015

4. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

5. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3rd Edn., Vishal Publishing Company Co., 2010.

6. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

7. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th Edn., Pearson Education, Noida, 2014.

8. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*, 4th Edn., Pearson Education, Noida, 2011.

9. Arthur I. Vogel, *Elementary Practical Organic Chemistry- Small Scale Preparations*, 2nd Edn., Pearson Education, Noida, 2013

10.An Improved Method for the Extraction and Thin-Layer W Chromatography of Chlorophyll a and b from Spinach Hao T. Quach, Robert L. Steeper, and G. William Griffin, J Chem Edn, 2004, 81, 385

11. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, S D Sarkar and L Nahar, John Wiley and sons, Ltd.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1						3				1	1	1
CO 2	2						2				2		1
CO 3	3						2				2		1
CO 4				2	2		2				2		1
CO 5	2						2		1	1	1	1	1
CO 6			3			2	2		1		2	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignm ent/viva/s eminar	Practical skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme **B.Sc** Chemistry Course Title **INORGANIC CHEMISTRY-II** MAJOR Type of Course 4 Semester Academic Level 200-299 **Total Hours Course Details** Credit Tutorial Practical Lecture per week per week per week 3 2 4 75 **Pre-requisites** Classification of elements to different blocks, Comparative study of s and p block elements based on electronic configuration and atomic size, General idea about transition and inner transition elements, Concept of coordinate bond, Differences between double salts and complexes, Ligands, Coordination number. Concept of catenation and polymerization. Theoretical and practical knowledge about volumetric analysis. **Course Summary** This course explains characteristics of s, p, d and f block elements. It also gives an insight into various theories in coordination compounds. It explores the application of inorganic chemistry in daily life. It covers practical application of complex formation in quantitative analysis.

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To Elucidate the trends in physical and chemical properties of s and p block elements	U	C	Instructor- created exams/ Quizzes/assignments
CO2	To Evaluate the general characteristics of Transition and Inner Transition elements, their comparison and applications	U	С	Instructor- created exams/ Quizzes/assignments

CO3	To demonstrate knowledge of coordination chemistry, isomerism and theories of bonding in coordination compounds	U	М	Instructor- created exams/ Quizzes/assignments
CO4	To analyze different types of inorganic polymers their structures, properties and applications	An	С	Instructor- created exams/ Quizzes/assignments
CO5	To Appreciate the utility of inorganic compounds in day to day life	Ар	М	Instructor- created exams/ Quizzes/assignments
CO6	To Apply the knowledge of complex formation and gain hands on experience in in quantitative analysis with some day to day application	Ар	Р	Group work /Viva Voce// Observation of practical skill

Detailed Syllabus:

Module	Unit	Content	Hrs	Mark
Ι	s & p BLOCK ELEMENTS			33
	1	s block General properties: Ionization Energy, Flame coloration, Photoelectric effect, Metallic character, Hydration energy.	2	
	2	p block elements: Comparative study- Halides, Sulfates, Carbonates and bicarbonates (solubility and thermal stability)	1	
	3	Oxidation number and inert pair effect, Comparison of Lewis acidity of boron halides.	2	
	4	Preparation, Properties, Structure and uses of Diborane, Boric acid, Borazine and Boron nitride, Structure of AlCl ₃	3	
	5	Structure and bonding of oxides of N (N ₂ O, NO, N ₂ O ₃ ,NO ₂ ,N ₂ O ₄ ,N ₂ O ₅) and S (SO ₂ and SO ₃)	2	
	6	Oxo acids of P (H ₃ PO ₂ , H ₃ PO ₃ , H ₃ PO ₄) and Cl (HOCl, HOCl ₂ , HOCl ₃ , HOCl ₄) (Structure and Acid strength), Colour and Bond Dissociation energy of halogens.	1	
	7	Interhalogen compounds: Preparation, Properties, Uses and Structure (One example each for AB,AB ₃ ,AB ₅ and AB ₇ types), Electropositive character of iodine, Pseudo	3	

		halogen: Comparison of Pseudo halogen (Cyanogen as example) and halogens and structure of Poly halide ions.		
	8	Noble gases: Isolation of noble gases: Dewar's method- Separation by charcoal adsorption method, Uses of He, and Ne	1	
п		TRANSITION AND INNER TRANSITION ELEMENTS	8hr	17
	9	Electronic configuration and General characteristics, Ionization energy, Colour, Magnetic properties, Reducing properties, Catalytic properties.	2	
	10	Non-stoichiometric compounds, Complex formation and Alloy formation. Comparison of 3d, 4d and 5d transition series. Important application of transition metals. Isopoly and heteropoly anions of W and Mo.	2	
	11	Lanthanides and Actinides- Electronic configuration and General properties. Isolation of Lanthanides from monazite sand, Separation by ion exchange method.	2	
	12	Magnetic properties. Lanthanide contraction, causes and consequences. Industrial importance of Lanthanides. Comparison of Actinides & Lanthanides [Mention only].	2	
III		COORDINATION CHEMISTRY	15 hr	33
	13	IUPAC Nomenclature of complexes, Types of ligands: (mono, bi, tri, tetra, hexa, ambidentate, chelate and macrocyclic ligands), Isomerism-Structural and Stereoisomerism,	2	
	14	Review of Werner's theory and Sidwick concept of coordination-EAN rule,	1	
	15	Factors affecting stability of complexes, Application of coordination complexes in quantitative and qualitative analysis.	2	
	16	Theories of bonding, VBT (valence bond theory), Geometry of coordination numbers 4 & 6, Limitation of VBT.	2	
	17	Crystal field Theory: CFT-splitting of d orbitals in Octahedral and Tetrahedral complexes. CFSE of low spin and high spin octahedral complexes- Normal and inverse	3	

		spinel compounds, Factors affecting crystal field splitting, Spectrochemical series.		
	18	CFT-splitting of d orbitals in Tetragonal and Square planar Complexes. Magnetism (spin only magnetic moment) and Colour (d-d transition), Distorted octahedral complexes- Jhan-Teller theorem, CFSE calculation and its applications, Merits and demerits of CFT.	5	
IV		INDUSTRIALLY IMPORTANT INORGANIC COMPOUNDS AND THEIR APPLICATION IN DAILY LIFE	7 hr	15
	19	Inorganic Polymers: Homochain Polymers and Heterochain Polymers.	1	
	20	Structure and Applications of Silicones, Silicates, Zeolites, Phosphazenes, Preparation, Properties and Structure of di and tri phosphonitrilic chlorides, SN compounds: Preparation Methods, Properties and Structure of $S_2N_{2,}$, S_4N_4 and $(SN)_{x,}$,	3	
	21	Refractory materials: Borides and Carbides, Inorganic fertilizers: Essential Nutrients to plants- Nitrogenous, Phosphate and Potash fertilizers-Examples with formula, Rocket Propellants: Classification with examples.	2	
	22	Cement: Ingredients, Setting of cement, Role of gypsum Glass: Varieties of glass.	1	
V		INORGANICCHEMISTRYPRACTICALII:COMPLEXOMETRICTITRATIONSANDINORGANIC PREPARATIONS	30 hr	
		From Section A Minimum of 3 experiments must be done and from Section B Minimum 3 experiments must be done		
		Section A		
		Complexometry		
		 Estimation of magnesium Estimation of Zinc Determination of hardness of water Determination of COD of water samples Section B 		
		Inorganic preparations:		
		(a) Ferric alum,		

(b)Nickel (II) dimethylglyoximate,	
(c)Tetraammine copper (II) sulfate,	
(d)Potash alum	
Open Ended: Any two experiments related to complexometry can be selected by the teacher	

References :

1. B.R. Puri L.R. Sharma, K.C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, New Delhi,2010.

2. S. Prakash, G. D. Tuli, S. K. Basu, R. D.Madan, Advanced Inorganic Chemistry,5th Edn.,Vol.I,S Chand,2012.

3. J.D. Lee, Concise Inorganic Chemistry,5th Edn.,Wiley India Pvt.Ltd.,2008.

4. R. Gopalan, V.Ramalingam, Concise Coordination Chemistry, 1st Edn., Vikas Publishing House, New Delhi,2001.

5. G. S. Manku ,Theoretical Principles of Inorganic Chemistry. McGraw-Hill Education; New edition (1 August 1982)

6. M.C. Day, J.Selbin, Theoretical Inorganic Chemistry, East West Press, New Delhi, 2002.

7. J. E. Huheey, E.A.Keitler,R.L.Keitler,Inorganic Chemistry-Principles of Structure and Reactivity,4TH Edn.,Pearson Education, New Delhi,2013.

8. M.N. Greenwood, A. Earnshaw, Chemistry of elements, 2nd Edn., Butterworth, 1997.

9. B.K. Sharma, Industrial chemistry, 11th Edn., Goel publishing House, Meerut, 2000.

10. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.

11. D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, *Fundamentals of Analytical Chemistry*, 8th Edn., Brooks/Cole, Thomson Learning, Inc., USA, 2004.

Further Reading

1. W.U.Malik, G.D.Tuli, R.D. Madan, selected Topics in Inorganic Chemistry, S. Chand and Co., New Delhi,2010(Reprint)

2. F.A.Cotton,G.Wilkinson,Advanced Inorganic Chemistry,6TH Edn.,Wiley India Pvt.Ltd., New Delhi,2009.

3. James E. House, Inorganic Chemistry, academic press, 2008.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
C O 1	3			-	2	2	3				2		1
C O 2	3		-	-	2	2	3				1	1	2
C O 3	3	-		-	-	-	2		1		1		2
C O 4	3	-			3	3	3		2	1	2		2
C O 5	2		-	-	3	2	2		1	1	2	2	2
C O 6	2	-	2		3	3	2		2	1	3	1	2

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment/ viva/seminar	Practical evaluation	skill	End Examinations	Semester
CO 1	\checkmark	\checkmark			\checkmark	
CO 2	\checkmark	\checkmark			\checkmark	
CO 3	\checkmark	\checkmark			\checkmark	
CO 4	\checkmark	\checkmark			\checkmark	
CO 5	\checkmark	\checkmark			\checkmark	
CO 6		\checkmark	\checkmark			

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc. CHEMISTRY

Programme	B. Sc. Chemistry						
Course Title	ORGANIC CHEMISTRY-II						
Type of Course	MAJOR						
Semester	IV						
Academic Level	200 - 299						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	 Concept of is isomerism (cl Basic idea ab elimination re 	hain, position out organic a	and function	nal) ions, substitut	ion and		
Course Summary	The concepts of chirality, Optical isomerism, Relative and absolute configuration and racemic mixture and its separation are included in the first module. The course is designed to provide a comprehensive understanding of addition, substitution and elimination reactions of organic chemistry. The practical component of the course helps to acquire skills in organic synthesis and Column chromatographic techniques.						

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
C01	To understand the concepts of chirality, optical isomerism and relative and absolute configuration.	U	C	Seminar presentation /Assignment
CO2	To provide a comprehensive understanding of addition reactions in organic chemistry, To understand the mechanisms and stereochemistry of addition reactions.	Ар	Р	Class test /Quiz /Assignment

CO3	Understanding the mechanism and stereochemical aspects of substitution reaction at sp3 carbon.	An	Р	Seminar Presentation / Instructor created exam			
CO4	To provide a comprehensive understanding of elimination reactions.	U	С	Instructor- created exams / Home Assignments			
CO5	Examine the mechanisms and factors influencing aromatic substitution reactions.	Ар	Р	Assignment /Seminar presentation /Class test			
CO6	Execute practical lab techniques in organic synthesis. Acquire skills in conducting column Chromatography for the separation mixtures. Chromatography for the separation mixtures.	Ар	Р	Lab work /Viva Voce			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

Module	Unit	Content	Hours	Marks
Ι	Stereoc	chemistry II	13	29
	1	Optical Isomerism: Optical activity – Concept of chirality – Chirality in organic molecules.	2	
	2	Enantiomers, Diastereomers and Meso compounds.	2	
	3	Optical isomerism in glyceraldehyde, lactic acid and tartaric acid.	1	
	4	Relative and absolute configuration - DL system, RS system of nomenclature for acyclic optical isomers with one and two asymmetric carbon (Amino acids ,Tartaric acids)– sequence rules. Erythro and threo representations (basic idea only)	4	
	5	Racemic mixture – Resolution methods (Chemical and biochemicals methods)	2	
	6	Enantiomeric excess, Optical purity. Common approaches in asymmetric synthesis. (mention only)	2	
II	Additio	on reactions	12	27

	7	Addition reactions to carbon-carbon multiple bonds: Origin of reactivity, regioselectivity (Markownikov's and anti-Markownikov's additions) and stereoselectivity of addition reactions	2	
	8	Examples of addition reactions: hydrogenation, halogenation, hydrohalogenation, hydration, oxymercuration-demercuration,	2	
	9	hydroboration-oxidation, epoxidation, dihydroxylation, ozonolysis.	1	
	10	Addition to C=C: Mechanism, reactivity, regioselectivity (Markownikov's and anti- Markownikov's additions) and stereoselectivity	3	
	11	Reactions: Complete hydrogenation, Partial hydrogenation, Electrophilic addition of halogens and hydrogen halides, Ozonolysis	2	
	12	Acidity of alkynes – test for terminal alkynes – Oxidation– (Ozonolysis and reaction with alkaline KMnO ₄). Chemistry of the tests for unsaturation: Bromine water and Baeyer's reagent test.	2	
III	Subst	itution and Elimination Reactions	10	21
	13	Nucleophilic substitution reactions: Substitution at sp ³ centre (systems: alkyl halides and alcohols)- Origin of reactivity, SN1, SN2 with stereochemical aspects, types of leaving groups (Oxygen-based and halogen- based).	3	
	14	Effects of substrate structure, solvent, nucleophile, and leaving group on Nucleophilic aliphatic substitution reactions.	3	
	15	Elimination reactions: E1, E2 & E1CB mechanisms. formation of alkenes and alkynes; mechanisms (with evidence), reactivity, regioselectivity (Saytzeff/Hofmann), and stereoselectivity;	3	
	16	competition between substitution and elimination reactions. Syn elimination	1	
IV	Arom	atic Substitution Reactions	10	21
	17	Aromatic Electrophilic Substitution: Mechanism of nitration, halogenation, sulphonation, Friedel-Crafts alkylation, and acylation	3	

	18	Synthesis of Aspirin. Ring activating and deactivating groups- Orientating effect of common substituents in aromatic electrophilic substitution.	2	
	19	Electrophilic substitution reactions of Phenols (bromination, nitration and sulphonation)	2	
	20	Preparation of phenolphthalein and Fluorescein	1	
	21	Aromatic nucleophilic substitution: Bimolecular displacement mechanism	1	
	22	Elimination-addition (benzyne intermediate) mechanism.	1	
V			30	
		PRACTICALS		
	Ι	 Separation of binary mixture using solvent extraction (strong acid neutral, basic+neutral and weak acid+neutral compound combinations) Bromination of Cinnamic acid (Green method- Bromide -Bromate mixture) Preparation of dibenzal acetone Nitration of acetanilide Reduction of ethyl acetoacetate by yeast and measurement of optical rotation. Drawing structures using software. Visualization of SN2 reaction using software 	24	
		Open Ended: 1.Making models of enantiomers and diastereomers	6	

References:

- 1. R. T. Morrison, R. N. Boyd, Organic Chemistry, Pearson Education, New Delhi.
- 2. I. L. Finar, Organic Chemistry, Vol. I, Pearson Education, New Delhi.
- 3. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Company Co.
- 4. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, A Textbook of Organic Chemistry, Vikas Publishing House.
- 5. P. Y. Bruice, Essential Organic Chemistry, 3rd Edn., Pearson Education, 2015.

- 6. John McMurry, Organic Chemistry, 5th Edn., Thomson Asia Pvt. Ltd.
- 7. C. N. Pillai, Organic Chemistry, Universities Press.
- 8. Vogel's practical organic chemistry.
- John McMurry, Eric Simanek, Fundamentals of organic chemistry, 6th Edn., Thomson India Edition.
- 10. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, S D Sarkar and L Nahar, John Wiley and sons, Ltd.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-	2		2		2		1
CO 2	2	2	-	-	2	-	3		1		2		1
CO 3	2	-		-	-	2	2		1		2		1
CO 4	2	-		1	-	-	3		1		2		1
CO 5	3		-	-	-	-	2		1		2		1
CO 6	-	-	3		_	_	3		3		2	2	2

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

Quiz / Assignment/ Quiz/ Discussion / Seminar

Midterm Exam

Programming Assignments (20%)

Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/viva/seminar	Practical skill Evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDERGRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry									
Course Title	PHYSICAL CHEMISTRY –II: CHEMICAL THERMODYNAMICS, KINETICS AND SURFACE CHEMISTRY									
Type of Course	MAJOR									
Semester	IV									
Academic Level	200-299									
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours					
		per week	per week	per week						
	4 3		-	2	75					
Pre-requisites	[Prerequisites: NCE] https://onlinecourses Fundamentals of Cl function - Thermody Types of systems]	. <u>swayam2.ac</u> hemical The	.in/nce24_sc(07/preview s. Path funct	ion and state					
Course Summary	We witness, feel an everyday. What dri principles of chemi- these questions. The understand the relat Here, the various to rates of chemical re catalysis and its imp this course.	ves these cha cal thermody e subject mat tion between pols to evalua eactions are a	nges? This contained and conta	ourse deals with themical kinet will enable the emperature, an systems in equ d. Further, the	ith the ics to answer student to nd energy. illibrium and concept of					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To Understand the fundamental concepts of	U	F	Assignments/Quiz/Se minars

	thermodynamics and identify it with the real world			
CO2	To apply thermochemical principles to chemical reactions	Ap	С	Work out problems/assignment s/Test
CO3	To apply the concept of kinetics and catalysis to various chemical and physical processes	Ap	С	Work out problems/assignment s/Test
CO4	To interpret kinetic data using graphical representations and evaluate the rate of a reaction	An	Р	Quiz/Discussion
CO5	To evaluate the surface area of catalysts using various adsorption isotherms	Ap	P	Quiz/Discussion
CO6	To apply the theories of kinetics and adsorption through laboratory experiments	С	Р	Lab work/Viva voce exams

Module	Unit	Content	Hrs (45+30)	Marks
Ι		FIRST LAW OF THERMODYNAMICS AND THERMOCHEMISTRY	15	33
	1	Intensive and extensive properties - Steady state and equilibrium state. Concept of thermal equilibrium	1	
	2	Zeroth law of thermodynamics. Intensive, extensive and state variables (state functions), Introduction to partial derivatives and line integrals, Euler theorem, Exact and Inexact	3	

		differential, Illustration of exact differential using molar volume of ideal gas.		
	3	First law of thermodynamics – Concept of heat (q), work, internal energy(U) and enthalpy (H) - Heat capacities at constant volume and at constant pressure & their relationship - Expansion of an ideal gas under isothermal and adiabatic conditions - Work done in reversible isothermal and adiabatic expansion.	4	
	4	Joule-Thomson effect- significance of term $(dU/dV)_T$ - Liquefaction of gasses - Derivation of the expression for Joule Thomson coefficient – Inversion temperature.	3	
	5	Thermochemistry: Heat changes during physical and chemical changes. Hess's Law.	2	
	6	Temperature dependence of reaction enthalpies- Kirchoff's law. Bond dissociation energies. Resonance energy from thermochemical data.	2	
II	S	ECOND & THIRD LAWS OF THERMODYNAMICS	10	21
	7	Limitations of first law and Need for the second law – Kelvin and Clausius statements. Carnot's theorem and Heat engine and its efficiency.	2	
	8	Concept of Entropy. Calculation of entropy change for reversible and irreversible processes. Statement of first law in terms of entropy. Entropy change during the isothermal mixing of ideal gasses.	2	
	9	Energy functions (Gibbs free energy (G) and Helmholtz energy (A)) and their variation with T and P.	2	
	10	Maxwell's relations. Gibbs-Helmholtz equation - Criteria for spontaneity and equilibrium - Significance of Clausius inequality.	2	
	11	Partial molar free energy - Concept of chemical potential - Gibbs-Duhem equation.	1	
	12	Third law of thermodynamics - Nernst heat theorem - Statement of third law.	1	
III		CHEMICAL KINETICS	15	33
	13	Rate of a reaction - Factors influencing the rate of a reaction- Concentration, Temperature, Surface area and Catalyst - Rate law - Order and molecularity -	2	
	14	Derivation of rate constants for first, second (with same and different reactants), third (with same reactants only) and zero	4	

		 A minimum of 5 practical experiments out of which TWO EACH from sections 1 and 2 must be performed and reported. For plots/graphs, suitable softwares may be used and printed hard copies may be presented. Practical records may be in handwritten or computer-typed printed form. Section 1 Determination of rate constant of the Acid Hydrolysis of ethyl acetate Determination of effect of temperature on the rate of acid hydrolysis of ethyl acetate Determination of order of the reaction between crystal violet dye and NaOH (or Fuchsin and NaOH) by using 	3 3 3	
V		PHYSICAL CHEMISTRY- PRACTICALS-2	30	
	22	Enzyme catalysis - Michaelis-Menten equation (derivation not required). Application of enzyme technology for environmental, medical, agricultural, and industrial benefits.	1	
	21	Homogeneous and heterogeneous catalysis - Theories of homogenous and heterogenous catalysis with examples	1	
	20	Physisorption, Chemisorption. Adsorption isotherms – Langmuir, Freundlich and BET (No derivation required). Determination of Surface area, Particle size and surface area, Activated charcoal and its uses	2	
	19	Solid surfaces, microstructure and elementary idea about microscopic techniques for studying the surface of solids (SEM, TEM, STM, AFM)	1	
IV	SUR	FACE CHEMISTRY, ADSORPTION AND CATALYSIS	5	11
	18	Unimolecular reactions - Lindemann mechanism.	2	
	17	Theories of reaction rates - Collision theory - Derivation of rate equation for bimolecular reactions using collision theory - Transition state theory - Expression for rate constant based on equilibrium constant and thermodynamic aspects – Eyring equation (derivation not required)	5	
	16	Effect of temperature on reaction rates - Arrhenius equation - Determination and significance of Arrhenius parameters	1	
	15	Half-life period (derivation for first and n th order reactions) - Methods to determine the order of a reaction.	1	
		order reactions with examples. Data interpretation including graphical representations		

	a colorimeter/spectrophotometer		
4	. Kinetics studies of reaction between KMnO ₄ and	3	
	Oxalic acid	•	
	. Open ended	3	
Secti	on 2		
	 Adsorption of oxalic acid on activated charcoal and thereby determining the adsorption isotherm. Observation of decolourisation of a suitable dye on 	3	
	activated charcoal or filter paper via visual or colorimetry/spectrophotometry	3	
8	. Verification of Hess's law by using Mg, MgO and HCl		
	reactions.	3	
9	. Effect of Mn2+ catalyst on reaction kinetics of		
	KMnO ₄ vs Oxalic acid	3	
1	0. Open ended	3	
Rofo	rences		
Kit	Tences		
Mod	ule I and II		
	 Physical Chemistry: Thermodynamics, Structure and Change, 10th Edition, P. Atkins and J. de Paula, (W. H Freeman and Company, New York) D. A. McQuarrie, J. D. Simon, Physical Chemistry – A Molecular Approach, (Viva, 2001.) T. Engel, P. Reid, Thermodynamics, Statistical Thermodynamics & Kinetics, Pearson Education, Inc: New Delhi, 2007. J. Rajaram, J. C. Kuriacose, Chemical Thermodynamics, Pearson Education, New Delhi, 2013. 		
Mod	ule III and IV		
	 Physical Chemistry: Thermodynamics, Structure and Change, 10th Edition, P. Atkins and J. de Paula, (W. H Freeman and Company, New York) K. Laidler, Chemical Kinetics, 3rd Edn., Pearson Education, New Delhi, 2004. 		
Mod	ule V		
	 Findlay's Practical Physical Chemistry, Ninth Edition, Revised and Edited by B P Levitt, (Longman, London, 1973) 		

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO 4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	-	-	3	2	3	2	2	-	2	-	1
CO 2	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 3	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 4	3	2	-	-	3	3	3	2	1	-	1	-	1

CO 5	3	2	-	1	3	3	3	2	1	-	3	-	1
CO 6	3	-	2	3	3	3	3	2	1	2	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment /viva	Practical skill evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark			\checkmark

CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B.Sc. CHEMISTRY

Programme	-									
Course Title										
Type of Course	MAJOR									
Semester	V 300 - 399									
Academic Level										
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours					
	4	4	-	-	60					
Pre-requisites Course Summary	 Elementary avincluding tran Basic understaquantised energing Review the concentration of the con	slation, rotat anding of qua rgy levels. oncept of elec- ith the relation erties. s the theoreti which find olecular Spec- ic of mathem ture) can be g ns. The cours g the study of be done by me across int n the symme	ion and vibra antum chemi ctron spin int onship betwee cal aspects of a wide range troscopy. atics which s grouped into se brings to lip of structures grouping the to only a few	ation. stry and the construction roduced in the en structure of f two fundame of practical suggests that so mathematical ght how group of molecules and mathematical mathematical solutions and mathematical	oncept of e course, f molecules ental topics of applications - ets of elements groups if they o theory can be based on their nd millions of l groups called by them. Such					

Molecular Spectroscopy: The interaction of electromagnetic radiation with
matter forms the basis for the different spectroscopic techniques used for
the structural elucidation of molecules. The course brings to light the
underlying principles involved in each of these spectroscopic techniques.
The allowed energy states of molecules and the transitions between them
are unique and are decided by the laws of quantum mechanics. Radiations
having different frequencies (and hence different energy) interact with
molecules and bring about characteristic transitions which help to identify
the exact structure of molecules.

.

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO 1	<i>understand</i> the principles of constructing mathematical groups	U	F	Assignment
CO 2	<i>realise</i> point groups as collections of symmetry operations of molecules	Ар	С	Class tests/Viva
CO 3	<i>identify</i> each spectroscopic method as the interaction of molecules with a characteristic radiation of the electromagnetic spectrum	An	Р	Seminar/ Class tests
CO 4	<i>apply</i> various spectroscopic techniques for the structural elucidation of molecules.	Ар	Р	Class tests/Assignment
CO 5	<i>justify</i> spectroscopic methods as unique tools for identifying molecules.	E	М	Viva
# - F	emember (R), Understand (U), Apply actual Knowledge(F) Conceptual Knowledge (M)			

Detailed Syllabus:

Module	Unit	Unit Content				
			(45 +30)			
Ι		Mathematical Preliminaries of Group Theory	6	12		
	1	Conditions for sets of elements to form mathematical groups - closure rule, associativity, existence of identity and inverse elements.	2			

	2	Order of a group, Definitions of finite, infinite, Abelian and cyclic groups.	1	
	3	Binary combination of elements of a group - the group multiplication table and its features - general group multiplication tables of groups up to order 4.	2	
	4	Sub groups, similarity transformation and classes.	1	
	Sectio	ons from References: Section A		
II	Gro	oup Theory as a Means for the Systematic Study of Molecular Symmetry	12	25
	4	Tools for studying molecular symmetry – symmetry elements, symmetry operations and their classification.	2	
	5	Mathematical groups of symmetry operations - the point groups, nomenclature of point groups - Schoenflies notations.	2	
	6	Assigning point groups to molecules based on their symmetry elements.	2	
	7	Binary combinations of symmetry operations - the group multiplication tables of C_{2v} , C_{3v} and D_{2h} point groups.	3	
	8	Identifying classes of symmetry operations in point groups (C_{2v} and C_{3v} as examples)	2	
	9	Matrix representation of symmetry operations. Matrices for the symmetry operations of C_{2v} , C_{3v} and D_{2h} .	1	
	Sectio	ons from References: Section A		
III		18	36	
	14	Energy levels in molecules – Born-Oppenheimer approximation. Electromagnetic spectrum - wavelength, frequency, wavenumber.	2	
	15	Interaction of electromagnetic radiation with matter - factors affecting line width and intensity of signal.	2	
	16	Rotational Spectroscopy: Introduction – Rigid rotor – Expression for energy – Selection rules – Intensities of spectral lines – Determination of bond lengths of diatomic molecules.	3	
	17	<i>Vibrational Spectroscopy:</i> Simple harmonic oscillator – Energy levels – Force constant – Selection rules - Anharmonicity – Fundamental frequencies – Overtones – Fingerprint region – Group frequency concept – Degree of freedom for polyatomic molecules – Modes of vibrations of CO ₂ and H ₂ O.	4	

	18	Raman Spectroscopy: Basic principles – Rayleigh scattering - Raman scattering-Stokes & anti-stokes lines and their intensity difference - classical theory of Raman effect: polarizability - quantum theory of Raman scattering, selection rules for Raman spectra- Qualitative treatment of rotational Raman effect – Vibrational Raman spectra — Selection rules – Mutual exclusion principle. Resonance Raman scattering, Raman and IR spectroscopy,	4	
	19	<i>Electronic Spectroscopy:</i> Basic principles – Frank-Condon principle – Electronic transitions – Beer Lambert's law - Dissociation energy of diatomic molecules – Chromophore and auxochrome – Bathochromic and hypsochromic shifts.	3	
	Sectio	ons from References: Section B		
IV		Molecular Spectroscopy-II	12	25
	20	6		
	21	 ¹³C NMR Spectroscopy: C-13 - relative abundance, chemical shift, spin-spin coupling. Factors affecting chemical shifts. Proton coupled and decoupled ¹³C NMR. 	3	
	22	<i>Electron Spin Resonance (ESR) Spectroscopy</i> : Principle - comparison between NMR and EPR - g factor - electron-nuclear interactions - hyperfine interactions – Hyperfine structure – ESR of methyl, phenyl and cycloheptatrienyl radicals.	3	
	Sectio	ns from References: Section B		
V	Oper	n Ended Module: Learning through problem solving and plots	12	
	1	 Categorize molecules into point groups based on symmetry elements Solving problems involving various spectroscopic data Deducing the structure of various compounds from different spectra 		

Sections from References: Section A	& Section B
-------------------------------------	-------------

Books and References:

Section A

- F. A. Cotton, *Chemical Applications of Group Theory*, 3rd Edn., John Wiley & Sons, New York, 1990.
- 2. A. Salahuddin Kunju & G. Krishnan, Group Theory & its Applications in Chemistry, PHI Learning Pvt. Ltd.2010.

Section B

- 1. C. N. Banwell, Fundamentals of molecular spectroscopy, McGraw-Hill, 1994.
- 2. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press 2006.
- B. R. Puri, L. R. Sharma, M. S. Pathania, *Principles of Physical Chemistry*, 46. Edn., Vishal Publishing Company, New Delhi, 2013.
- 4. Donald A. McQuarrie, John D. Simon, *Physical Chemistry: A Molecular Approach*, University Science Books: Sausalito, CA; 1997.

Further reading

- K.Veera Reddy, Symmetry & Spectroscopy of Molecules 2nd Edn., New Age International 2009.
- 2. H. H. Jaffe and M. Orchin, Symmetry in Chemistry, John Wiley & Sons Inc., 1965.
- 3. G. M. Barrow, Introduction to Molecular Spectroscopy, McGraw Hill, London, 1962.
- 4. Thomas Engel, Quantum Chemistry & Spectroscopy, Pearson education, 2006.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-	3				1		2
CO 2	2	3	-	-	-	-	3						2
CO 3	_	-	1	-	_	_	3				2		1

CO 4	-	-	2	3	-	-	3		2	3	2
CO 5	-	1	-	-	-	I	3	1	2	2	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar •
- Midterm Exam
- Programming Assignments (20%)
 Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignm ent/viva/s eminar	Practical skill Evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

B.Sc Chemistry Programme Course Title **INORGANIC CHEMISTRY-III** Type of Course MAJOR V Semester 300-399 Academic Level Course Details **Total Hours** Credit Tutorial Practical Lecture per week per week per week 4 3 2 75 _ **Pre-requisites** Different segments of environment, Environmental pollution, Different types of pollution, health effect and hazards associated with chemicals, Acid-base concepts, basic idea about chemical analysis Course This course explains different types of environmental pollution, its causes, Summary consequences, remedies of prevention and develop concerns for the environment It reveals the importance of need of green chemistry and green synthesis It gives an idea about major acid base concepts and reactions in nonaqueous solvents It initiates the students for exploitation of advanced materials in the demand of changing trends of modern industry. This course explores students to the role and opportunities of Chemistry as a discipline in the modern era and develops skills in qualitative and quantitative analysis of inorganic compounds.

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To critically evaluate issues in environment	An	C	Instructor-created exams / Assignments
CO2	To gain insights into the economic and environmental aspects of green chemistry and to contribute the advancement of sustainable practices in the field of chemistry	Ар	С	Assignment / seminar/quizes
CO3	To understand the theories of acids and bases and reactions in non aqueous solvents and to identify compounds as acids and bases	Ар	С	Assignment/Seminar/Class test
CO4	To understand and apply principles of material chemistry and its facets	Ар	С	Assignment/Seminar/Class test
CO5	To equip the students with familiarization in separation and identification of ions	Ар	Р	Group work /Assignment/class test/
CO6	Practicum in inorganic qualitative analysis with hands on familiarity with various ions	An	Р	Group work /Assignment/ Viva, Observation of practical skill
- Fact), Evaluate (E), Create (C) ural Knowledge (P) Metacognitive

Detailed Syllabus:

Module	Unit	Content	Hrs	Mark
Ι	ENV	IRONMENTAL CHEMISTRY AND GREEN CHEMISTRY	15	33

	_	advanced ceramics), Composition- oxides and nitrides- general		
	13	Ceramic materials: Definition, classification(traditional and	5	
	12	Introduction and scope of material chemistry-	1	
III		MATERIAL CHEMISTRY	15	33
	11	Reactions in Liquid Ammonia, liquid SO ₂ and Liquid HF	2	
	10	Non - aqueous Solvents: Classification – General Properties	1	
	9	Major acid-base concepts, Arrhenius, Bronsted-Lowry, Solvent system, Lux-Flood, Lewis and Usanovich concepts.	2	
II		CID BASE CONCEPTS AND NON-AQUEOUS SOLVENTS	5	10
	8	Introduction to Green chemistry – Goals of Green chemistry, Twelve basic principles of green chemistry- Atom economy- Green solvents- water, supercritical fluids, ionic liquids [mention with examples).	2	
	7	Soil pollution, Thermal pollution, noise pollution, light pollution, radiation pollution (Sources and effects)	3	
	6	Water quality parameters (DO,BOD and COD and their determination), Toxic metals in water(Pb, Cd and Mg), control of water pollution	2	
	5	Water Pollution : Sources of water pollution, Eutrophication, Bioaccumulation, bioMagnification,	2	
	4	Control of air Pollution, alternative refrigerants	1	
	3	Effects of air pollution: Smog (London and Los Angeles Smog), Global warming, ozone depletion, acid Rain,	2	
	2	Air Pollution : Types of air pollutants, Gaseous air pollutants (oxides of carbon, nitrogen and sulphur), Particulates.	2	
	1	Environment and Environmental pollution, pollutant and contaminant, Segments of Environment	1	

		properties- applications- structural, Electronics, thermal and biomedical applications		
	14	Catalytic materials : zeolites, alumina- surface properties, supporting materials	3	
	15	Composite materials: Definition and types of composite materials (polymer matrix composites, metal matrix composites, carbon matrix composites- explanation with examples	3	
	16	Inorganic solids :Perovskites- ABX ₃ - CaTiO ₃ , LaCoO ₃ , spinel compounds- AB ₂ O ₄ - MgAl ₂ O ₄	3	
IV	INOI	RGANIC QUALITATIVE AND QUANTITATIVE ANALYSIS	10	22
	17	Inorganic qualitative analysis: Need for elimination of interfering acid radicals and their elimination methods – oxalate, fluoride, borate, phosphate, chromate, arsenite and arsenate	1	
	18	Principles of separation of basic radicals into various groups – Solubility product and Common Ion effect – Their application in the qualitative inorganic analysis.	2	
	19	Micro analysis: merits and application, preparation of sodium carbonate extract and its merits	1	
	20	Inorganic Quantitative Analysis – Gravimetric analysis – Introduction – Types of gravimetric analysis, Precipitation, Advantages and disadvantages of gravimetric analysis –	2	
	21	Properties of precipitates and precipitating agents, Mechanism of precipitate formation- Von Weimarn equation and its applications– Co-Precipitation and post precipitation –	2	
	22	 Homogeneous and heterogeneous precipitation – gravimetric factor - Inorganic and Organic precipitating agents and their applications - NH₃, H₂SO₄, NH₄ SCN, oxine, cupron, cupferron, 1-nitroso- naphthol, dithiocarbamates. 	2	

V	INORGANIC CHEMISTRY PRACTICAL III:INORGANIC QUALITATIVE AND QUANTITATIVE ANALYSIS	30	
	1. Inorganic qualitative analysis:		
	a) Study of reactions of following ions,		
	<i>Anions</i> : carbonate, sulphate, fluoride, chloride, acetate, borate, oxalate, phosphate and nitrate		
	<i>Cations:</i> Lead, bismuth, copper, cadmium, iron, aluminium, cobalt, nickel		
	manganese, zinc, barium, calcium, strontium, magnesium and ammonium		
	 b) Systematic analysis of mixtures containing two cations and two anions from the above list (Na₂CO₃ extract procedure may be adopted) 		
	2. Inorganic quantitative analysis : Gravimetric analysis		
	(Open ended)		
	a) Estimation of barium as barium sulphate or sulphate as barium sulphate can be done		

References:

1. A.K. De, Environmental Chemistry, 6th Edn., New Age International Pvt. Ltd., New Delhi, 2006.

2. S. S. Dara, A Textbook of Environmental Chemistry and Pollution Control, 8th Edn., S. Chand and Sons, New Delhi, 2008.

3. K. Ahluwalia, Environmental Chemistry, Ane Books India, New Delhi, 2008.

4. Paul T. Anastas, T. C. Williamson, Green Chemistry – Designing Chemistry for the Environment, 2nd Edn., 1998.

5. S. C. Ameta, R. Ameta, Green Chemistry: Fundamentals and Applications, CRC Press, 2013.

6. Anthony R. West, Solid State Chemistry and its Applications, 2 nd Edn., Wiley-Blackwell, 2014.

7. Green Chemistry - Environmental friendly alternatives- edited by Rashmi Sanghi & M. M. Srivastava, Narora Publishing House, (2003).

8. N.N. Greenwood and A.Earnshaw, *Chemistry of Elements, 2/e, Elsevier* Butterworth-Heinemann, 2005.

9. J.E.Huheey, E.A.Keiter, R.L.Keiter. O.K.Medhi. *Inorganic Chemistry, principles of structure and reactivity*, Pearson Education, 2006.

10. G.L.Miessler, D.A.Tarr, Inorganic Chemistry, Pearson, 2010.

11. M.J. Starfield and Shrager, Introductory Material Science, McGraw Hill.

12. K.K. Chowla, Composite Materials, Springer – Verlag, NY, 1987.

13.. M. Tinkham, Introduction to Superconductivity, McGraw Hill, 1975.

14. A.V. Narlikar and S.N. Edbote, Superconductivity and Superconducting Materials, South Asian Publishers, New Delhi, 1983.

15. G. Svehla, Vogel's Qualitative Inorganic Analysis, 7th Edn., Prentice Hall, New Delhi, 1996.

16. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Quantitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	-	1	2	1	2	3		1	1	2	3	2
CO 2	2	1	3	2	2	3	2		1		1	3	2
CO 3	3	1		2	2	3	3		1	1	1	1	2
CO 4	3	-	2		1	3	3		2	1	2	1	2
CO 5	2		2	-	2	2	2		2		2	2	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment /viva/semin ar	Practical skill evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry	B. Sc. Chemistry									
Course Title	ORGANIC CHEMI	ORGANIC CHEMISTRY - III									
Type of Course	MAJOR	MAJOR									
Semester	V	V									
Academic Level	300 - 399										
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours						
	4	3	-	2	75						
Pre-requisites	acids. 2. Nomenclature aldehydes, ke	 Methods of preparation of aldehydes, ketones and carboxylic acids. Nomenclature, isomerism and general physical properties of aldehydes, ketones, carboxylic acids and amines. Acidity of carboxylic acids and basicity of amines. 									
Course Summary	To give the studer nucleophilic addition and chemistry of r applications in organ	and substitution and su	tion reaction	s of carbonyl	compounds						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyze and compare the reactivity of aldehydes and ketones in nucleophilic addition reactions using various carbon, nitrogen, oxygen and sulphur nucleophiles	An	Р	Instructor- created exams / Quiz /Assignment
CO2	Explain the origin of reactivity of carboxylic acids and their derivatives and analyse nucleophilic acyl substitution reactions and hydrolysis of carboxylic acid derivatives		С	Class test /Assignment /Quiz
CO3	Demonstrate the oxidation and reduction reactions of alkenes, alkynes, alcohols, aldehydes, ketones and carboxylic acids using various oxidising and reducing agents	Ар	Р	Assignment/ Class test

CO4	Identify the preparation methods and important reactions of nitro compounds, amines and sulpha drugs and explain the properties and synthetic transformations of aryl diazonium salts	Ар	Р	Assignments /Seminar presentation
CO5	Evaluate reactions involving α -carbons of carbonyl compounds and conjugated addition reactions of α , β -unsaturated carbonyl compounds and apply active methylene compounds in organic preparations	Ε	C	Class test /Assignment /Quiz
CO6	Conduct qualitative tests to identify specific functional groups, such as aldehydes, ketones, carboxylic acids, phenols, nitro compounds, amines, amides, esters etc. and synthesis of some organic compounds like aspirin, cinnamic acid, iodoform, biodiesel etc	An	Р	Lab work/Viva Voce
# - Fact	nember (R), Understand (U), Apply (Ap), A tual Knowledge(F) Conceptual Knowledge edge (M)	• • •		

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
I	Chemistry of Carbonyl Compounds-I		15	32
	1	Origin of reactivity of the carbonyl group. Comparison of reactivity of aldehydes and ketones	2	
	2	Nucleophilic addition reactions of aldehydes and ketones (Mechanism expected) - Carbon nucleophiles (Addition of HCN, Grignard reagents), Nitrogen nucleophiles (NH ₃ , amine, hydroxylamine, hydrazine, semicarbazide and DNP reagent), Oxygen nucleophiles (H ₂ O, alcohols), Sulphur nucleophiles (sodium bisulphite)	3	
	3	Keto-enol tautomerism. Reactions involving α carbons of carbonyl compounds - Aldol condensation, Cannizzaro reaction and Benzoin condensation (mechanism expected), Perkin's reaction, Knoevenagel reaction and Haloform reaction (mechanism not expected)	5	
	4	Conjugate addition reactions of α , β -unsaturated carbonyl compounds – 1,2 and 1,4 – addition reactions	2	

	5	Active Methylene Compounds: Examples – Preparation of ethyl acetoacetate by Claisen condensation (mechanism expected) – Synthetic applications of ethyl acetoacetate	3	
II	Chemistry of Carbonyl Compounds-II		8	18
	6	6 Origin of reactivity in the carboxylic acid family. Nucleophilic acyl substitution reactions and Mechanism		
	7	Comparison of reactivity of Carboxylic Acids and derivatives, Hydrolysis of carboxylic acid derivatives	2	
	8	Fischer esterification (mechanism expected), HVZ reaction, Decarboxylation – Kolbe electrolysis (mechanism expected)	2	
	9	Interconversion of Carboxylic acid derivatives. Introductory idea about β -lactam antibiotics – Structure and action of Penicillin- G	2	
III		Oxidation & Reduction reactions	7	16
	10	Oxidation and reduction of alkenes and alkynes	1	1
	11	Oxidation of alcohols with PCC and CrO ₃	1	_
	12	Oxidation of aldehydes and ketones with acidified K ₂ Cr ₂ O ₇ , KMnO ₄ , CrO ₃ ; Oppenauer oxidation. Distinguishing aldehydes and ketones (Tollen's reagent, Fehling's solution)	2	
	13	Reduction of aldehydes and ketones – Catalytic hydrogenation, Wolf-Kishner, Clemmensen, metal hydride (LiAlH4 and NaBH4) and MPV reduction	2	
	14	Reduction of carboxylic acids (LiAlH4, BH3)	1	-
IV		Nitrogen containing compounds	15	32
	15	Nitro compounds: Preparation and important reactions of nitro compounds, Ketones from nitro compounds – Nef reaction (mechanism not required)	2	
	16	Reduction products of nitrobenzene in acidic, neutral and alkaline media	2	
	17	Amines: Preparation – Gabriel phthalimide synthesis, from reduction of nitriles and isonitriles.	1	
	18	Amines: Properties - Carbylamine reaction, Mannich reaction, Hoffmann's exhaustive methylation, Hofmann-elimination reaction (with mechanism and stereochemistry)	3	
	19	Electrophilic substitution reactions of aniline (Nitration, Bromination and Benzoylation)	2	

		1						
	20	Distinction between 1° , 2° and 3° amines with Hinsberg reagent and nitrous acid	1					
	21	21 Preparation and uses of sulpha drugs – Structural formula of sulphapyridine, sulphadiazine, sulphathiazole and sulphaguanidine						
	22 Synthetic transformations of aryl diazonium salts, azo coupling. Preparation of methyl orange							
V		Practicals - Reactions of Organic Compounds	30					
	Ι	Analysis of organic compounds from the following list (also prepare the derivatives).	16					
		1. Phenols (phenol, α-naphthol).						
		2. Nitro compounds (nitrobenzene, o-nitrotoluene).						
		3. Amines (aniline, N,N-dimethylaniline).						
		4. Aldehydes and ketones (benzaldehyde, benzophenone).						
		5. Carboxylic acid (benzoic acid, cinnamic acid, phthalic acid, salicylic acid).						
		6. Carbohydrates (glucose, sucrose).						
		7. Amides (benzamide, urea).						
		8. Esters (ethyl benzoate, methyl salicylate).						
		Analysis of about 7 organic compounds containing the above functional groups.						
	II	Organic Preparations (Any two)	8					
		Synthesis of aspirin, cinnamic acid, iodoform and biodiesel						
	III	Open Ended	6					

References:

- 1. R. T. Morrison, R. N. Boyd, Organic Chemistry, Pearson Education, New Delhi.
- 2. I. L. Finar, Organic Chemistry, Vol. I, Pearson Education, New Delhi.
- 3. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Company Co.
- 4. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, A Textbook of Organic Chemistry, Vikas Publishing House.
- 5. P. Y. Bruice, Essential Organic Chemistry, 3rd Edn., Pearson Education, 2015.
- 6. John McMurry, Organic Chemistry, 5th Edn., Thomson Asia Pvt. Ltd.
- 7. C. N. Pillai, Organic Chemistry, Universities Press.
- 8. Vogel's practical organic chemistry.
- 9. John McMurry, Eric Simanek, Fundamentals of organic chemistry, 6th Edn., Thomson India Edition.

10. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, S D Sarkar and L Nahar, John Wiley and sons, Ltd.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	1	-	-	-	-	3	1	2	2	2	1	2
CO 2	2	1	-	-	-	-	2	1	1	2	2	2	2
CO 3	2	-		2	-	-	2	2	2	1	2	1	2
CO 4	-	-		2	1	1	2	1	1	2	2	1	2
CO 5	3			2	-	-	2	1	1	2	2	2	2
CO 6	_	_	3	2	_	2	3	2	2	2	2	2	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Quiz / Assignment/ Quiz/ Discussion / Seminar

Midterm Exam

Programming Assignments (20%)

Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignme nt/viva/se minar	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry								
Course Title	INORGANIC CHEMISTRY-IV								
Type of Course	MAJOR								
Semester	VI								
Academic Level	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
		per week	per week	per week					
	4	4	-	-	60				
Pre-requisites	Solid foundation in C	Coordination	Chemistry. U	niqueness of	carbon, covalent				
	bond, and coordinate	bond. Bondi	ng in carbon	monoxide. K	nowledge about				
	minerals and ores. Im	portance of a	metal ions in	biological sys	stems. Atomic				
	number, mass numbe	er, isotopes, b	asic idea abo	ut nuclear rad	lioactivity, Nuclear				
	fission and fusion.								
Course Summary	This course enables	the student	s to develop	knowledge	about theories of				
	bonding in coordinat	tion compou	nds, stability	constants, c	helating effects. It				
	covers the detailed	l study on	structure,	bonding and	d applications of				
	organometallic com	pounds. It	gives basi	c understand	ding of different				
	metallurgical process	es. It enables	the students	to familiarise	with various metal				
	ions, their compound	ds and their	important i	n biological	systems. It covers				
	various aspects of nu	clear chemist	ry including	nuclear stabil	ity and reactions.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	To Understand and apply theories	U	С	Instructor-created exams
	of bonding in coordination compounds			/ Assignments
	compounds			

CO2	To Classify , interpret and create organometallic compounds, including their applications in synthesis and as catalysts	U	С	Instructor-created exams / Assignments
CO3	To Describe and perform steps in metallurgy and recognize the composition and uses of various alloys	Ар	С	Assignment / seminar/quizzes
CO4	To Identify the role of metal ions in biological systems and understand their significance in biological processes	Ар	С	Assignment/Seminar/Cla ss test
CO5	To describe knowledge of the fundamental aspects and practical applications of nuclear chemistry.	Ар	U	Assignment/class test/
* - Reme	ember (R), Understand (U), Apply (Apply (Ap)	p), Analyse (An), Evaluate (E), Create (C)
# - Factu	al Knowledge(F) Conceptual Knowle	edge (C) Proc	edural Knowled	dge (P) Metacognitive
Knowled	lge (M)			

Module	Unit	Content	Hrs	Mark				
Ι	I THEORIES OF BONDING IN COORDINATION COMPOUNDS							
	1	Molecular orbital theory-Composition of ligand group orbitals.	2					
	2	MO diagram of octahedral tetrahedral and square planar complexes with and without π -bonding.	4					
	3	Stepwise and overall formation constant and relationship between them, Trends in stepwise formation constants.	3					
	4	Determination of stability constants by spectrophotometric methods. Stabilization of unusual oxidation state.	3					
	5	Thermodynamic origin of chelating effect, Macrocyclic and Template effect.	3					

II		ORGANOMETALLIC CHEMISTRY	12	25						
	6	, C 1								
		basis of M-C bond with examples. Classification of organic ligands based on hapticity.								
		ligands based on hapticity.								
	7	Metal carbonyls-Definition- Classification, 18 electron rule and	2							
		and polynuclear metal carbonyls (calculation by oxidation								
		number method and covalent method). MOT and the basis for								
	8	General methods of preparation properties and structures of	2							
		mono and binuclear carbonyls of Cr, Mn, Fe, Co and Ni.								
	8	Bonding in metal carbonyls (MO diagram of CO to be	2							
		discussed). Synergic effect and use of IR spectra to explain the								
		extent of back bonding.								
	9	Preparation, Structure, Bonding and Reactions : Zeise's salt,	3							
		Metallocenes- Ferrocene (VBT and MOT).								
	10	Applications of organometallic compounds in synthesis and as	1							
		catalysts, Hydrogenation using Wilkinson's catalyst and								
		Polymerization of alkenes using Ziegler Natta catalyst								
		(mechanism not needed).								
III		METALLURGY	11	23						
	11	Discuss the terms: Mineral, Ore, Gaunge, Flux, slag,	2							
		Electrometallurgy – Hydrometallurgy.								
	12	Steps in metallurgy:(a)Pulverization of the ore	2							
		(b)Concentration of the ore (Physical and chemical)								
		(c)Treatment of the concentrated ore-Calcination and roasting								
		(d)Reduction-different methods: Smelting, Gold smith alumino								
		thermic process, Kroll's process, Electrolytic reduction, Self								
		reduction. (e) Refining :Liquation, Distillation.								
	13	Vapour Phase refining, Zone refining, Oxidative refining,	2							
		Electrolytic refining, Poling, Cupellation, Parting process, Ion								
		exchange method.								

	14	Ellingham diagrams for metal oxides – Extractive metallurgy of	3	
		Fe, Ni and Ti.		
	15	Alloys: Definition – Composition and uses of German silver,	2	
		Brass, Bronze, Gunmetal and Alnico. Steel: Open hearth process,		
		Classification of steel, Composition and uses of alloy steels,		
		Composition, Properties and Applications of industrially		
		important stainless steel types, (AISI) (a brief study).		
IV		BIOINORGANIC CHEMISTRY	10	20
	16	Discuss various elements present in the biological system,	2	
		Essential and Non-essential elements, Metal ions in biological		
		system, Trace and bulk metal ions, Role of alkali metal ions in		
		biological systems, Sodium-potassium pump, Structural role of		
		calcium.		
	17	Ligands present in biological systems, Structure of Porphyrin	1	
		and Corrin.		
	18	Structure of heme - Oxygen transport by heme proteins,	2	
		Hemoglobin and Myoglobin, Structure of the oxygen binding		
		site, Nature of heme- dioxygen binding, Cooperativity.		
	19	Structure of Hemerythrin and Hemocyanin.	1	
	20	Metalloenzymes and Metal activated enzymes, Biochemistry of	2	
		Zn – structure and functions of Carboxypeptidase, Carbonic		
		Anhydrase, Biochemistry of Cobalt, Vitamin B 12 and		
		Deficiency diseases.		
	21	Chlorophyll and Photosynthesis (mechanism not expected).	1	
	22	Anticancer drugs. Cis-platin, Oxaliplatin, Carboplatin and	1	
		Auranofin – Structure and Significance.		
V		NUCLEAR CHEMISTRY	12	
	23	The teacher can choose the important topics in the area nuclear	12	
		chemistry: Nuclear stability, N/P ratio, Mass defect (numerical		
		problems), Packing Fraction, Binding Energy per Nucleons,		
		Radioactivity, Group displacement law, Disintegration series,		
		Nuclear fission, Fusion, Reactors: Applications, RadioCarbon		
		dating, Rock dating, Isotopes as tracers.		

	Must cover Nuclear stability, n/p ratio, Fission, Fusion,
	Separation of isotopes, Application of isotopes.

References:

- D. F. Shriver, P. W. Atkins, Inorganic Chemistry, 5th Edn., Oxford University Press, New York, 2010.
- 2. M. C. Day, J. Selbin, Theoretical Inorganic Chemistry, East West Press, New Delhi, 2002.
- 3. J. E. Huheey, E. A. Keitler, R. L. Keitler, Inorganic Chemistry Principles of Structure and Reactivity, 4 th Edn., Pearson Education, New Delhi, 2013.
- J. D. Lee, Concise Inorganic Chemistry, 5th Edn., Oxford University Press, New Delhi, 2008.
- B. R. Puri, L. R. Sharma, K. C. Kalia, Principles of Inorganic Chemistry, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry,6TH Edn., Wiley India Pvt. Ltd., New Delhi,2009.
- R. Gopalan, V. Ramalingam, Concise Coordination Chemistry, 1 st Edn., Vikas Publishing House, New Delhi, 2001.
- 8. R. C. Mehrotra, A. Singh, Organometallic chemistry, New age publishers, 1991.
- 9. A. Cottrel, An introduction to metallurgy, 2nd Edn., University press, 1990.
- Bertini, H. B. Gray, S. J. Lippard, J. Selverstone Valentine, Bioinorganic Chemistry, Viva Books Pvt. Ltd., 2007.
- P. Powell, Principles of Organometallic Compounds, 2nd Edn., Chapman and Hall, London, 1988.

Mapping of COs with PSOs and POs :

	PS O1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	1	-	-	-	1	3				1		1
CO 2	2		-	-	1	2	2		1		2	1	2
CO 3	3	-		-	2	2	3			1			1
CO 4	2				2	1	3					1	1
CO 5	2		-	-	1	3	3					1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/viva/ seminar	Practical skill evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3		\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	ORGANIC CHEMI	ORGANIC CHEMISTRY - IV						
Type of Course	MAJOR	MAJOR						
Semester	VI	VI						
Academic Level	300 - 399							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours			
	4	3	-	2	75			
Pre-requisites	 Distillation and chromatographic techniques Essential and non-essential amino acids Chemistry of Fehling's solution test and Tollen's reagent test CHE5CJ301 							
Course Summary	To give the student chemistry and polym products, biomolecule	er chemistry	, a basic kno	owledge abou	t the natural			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate the nomenclature, structure, methods of preparation, reactivity and common reactions of heterocycles including Furan, Pyrrole, Thiophene, Pyridine, Indole, Quinoline and Isoquinoline and demonstrate the structure of Imidazole, Pyrazole, Oxazole, Pyrimidine and Purine.	Ap	Р	Seminar presentation /Assignment/Class test
CO2	Examine the classification, isolation, purification and physiological activities of alkaloids and terpenes. Evaluate the classification, structural	U	С	Class test /Quiz /Assignment

	features, reactions and tests of carbohydrates.			
CO3	Understand the concepts of classification, structural features and the significant role of biomolecules like amino acids, proteins, nucleic acids, lipids, steroids and hormones, in nature/human body.	U	С	Seminar Presentation / Instructor created exam
CO4	Analyse the classification, types of polymerisation, and commercially important polymers as well as the importance of glass transition temperature and molecular weight determination of polymers.	An	Р	Instructor-created exams / Home Assignments
CO5	Elucidate the structure of simple organic compounds using spectral techniques.	Ар	Р	Assignment /Seminar presentation /Class test
CO6	Prepare polymers and heterocyclic compounds, isolate and purify natural products and interpretation of spectral data of simple organic compounds.	Ap	Р	Lab work /Viva Voce
# - Fa	emember (R), Understand (U), Apply (Ap actual Knowledge(F) Conceptual Knowled vledge (M)	-		

Module	Unit	Content	Hrs	Marks
Ι		Heterocyclic Compounds	10	22
	1	Common Heterocycles: Pyrrole, thiophene, furan, pyridine, indole, quinoline, isoquinoline -Structure (with aromaticity), IUPAC Nomenclature Imidazole, Pyrazole, Oxazole, Pyrimidine and Purine (Structure only)	3	
	2	 Furan: Preparation from furfural (Industrial method), Feist-Benary synthesis and Paal-Knorr synthesis, Reactivity and reactions of furan. Furan in nature and medicine – rose furan and ranitidine Pyrrole: Hantzsch pyrrole synthesis, Knorr pyrrole synthesis, biosynthesis (general awareness only). Reactivity and reactions of pyrrole. Ring expansion reaction, Porphobillinogen, chlorophyll and heme. 	7	

		 Pyridine: Industrial preparation from coal tar, Chichibabin pyridine synthesis, Bonnemann cyclization, Krohneke pyridine synthesis Reactivity of pyridine- Electrophilic substitution (Nitration, sulphonation, halogenation, alkylation, acylation), Nucleophilic substitution, lewis basicity and coordination compounds, pyridinium chloro chromate (PCC). Indole: Industrial method for the preparation of indole from aniline, Fischer indole synthesis Reactivity of indole- Electrophilic substitution (Nitration, sulphonation, halogenation, alkylation, acylation), oxidation, Diels alder reaction, Indole derivatives in nature-tryptophan Quinoline: Skraup synthesis and Doebner reaction Reactivity of quinoline: Electrophilic substitution, reduction of quinoline, quinoline containing antimalarial drugs (General awareness only) Isoquinoline: Bischler-Napieralski synthesis, Isoquinoline 		
		in nature- papaverine and tyrosine, isoquinoline derivatives as pharmaceuticals as well as neurotoxins		
II		Natural Products	9	20
	3	Alkaloids: Common alkaloids present in nature,	-	
		Classification based on structure of heterocyclic ring, isolation and purification, physiological actions of nicotine, quinine and coniine	2	
	4	Classification based on structure of heterocyclic ring, isolation and purification, physiological actions of nicotine,	2	
		Classification based on structure of heterocyclic ring, isolation and purification, physiological actions of nicotine, quinine and coniine Terpenes : Common Terpenes present in nature, isoprene rule and special isoprene rule, Classification, isolation and		
	4	Classification based on structure of heterocyclic ring, isolation and purification, physiological actions of nicotine, quinine and coniine Terpenes : Common Terpenes present in nature, isoprene rule and special isoprene rule, Classification, isolation and purification, significances Carbohydrates : Classification, Common carbohydrates in nature and their structural features, epimers, anomers, reducing sugars and non-reducing sugars, relative and	2	

III		Biomolecules and Polymers	16	34
	8	Amino acids: Structure of essential amino acids and their classifications	3	
		Proteins and peptides: Structure of proteins and peptides – Primary, secondary, tertiary and quaternary structure. Common proteins and their role in the body. Determination of primary structure of proteins. Protein sequencing methods		
	9	Nucleic Acids: Constituents of nucleic acids - nitrogenous bases, nucleosides and nucleotides	2	
		DNA and RNA – structure and their significance, Vital role of DNA and RNA in nature. DNA fingerprinting and applications		
	10	Lipids: Classification- Simple lipids, Complex lipids and derived lipids and Biological functions of lipids	2	
		Oils and Fats - Acid value, Saponification value and Iodine value, Reichert-Meissl (RM) number of butter.		
	11	<i>Steroids</i> : Classification of steroids – corticosteroids and anabolic-androgenic steroids or sex hormones, examples (Structure is not expected),	2	
		Cholesterol: Structure, LDL and HDL, significances		
		Hormones : Classification – lipid hormones (eg: testosterone, estradiol), Amine hormones (eg: epinephrine from tyrosine, melatonin from tryptophan), peptide hormone (eg: oxytocin and vasopressin).		
	12	Polymers: Classification of polymers, Biodegradable polymers, Conducting polymers (Introduction only)Types of Polymerisation - Chain and step growth polymerizations – Free radical, ionic and coordination polymerizations with mechanism – Ziegler-Natta polymerization and its advantages	4	
	13	Glass Transition Temperature (Tg), Importance of Tg	1	
	14	Molecular Weight of Polymers, Determination of number average, weight average and viscosity average molecular weight	1	
	15	Commercially important polymers-Polyethylene, PVC, Teflon, PMMA, phenol-formaldehyde resin -properties and uses	1	

IV		Basic Organic Spectroscopy	10	22
	16	Introduction- Spectroscopy-Applications of spectral techniques in the structural elucidation of organic compounds.	1	
	17	UV-Visible Spectroscopy: Electronic transitions in molecules ($\sigma \rightarrow \sigma^*$, $n \rightarrow \sigma^*$, $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$) – Chromophore and auxochrome. Study of the UV spectra of butadiene, acetone, methyl vinyl ketone and benzene. λ_{max} calculation for dienes and α,β -unsaturated carbonyl compounds	2	
	18	IR Spectroscopy: Concept of group frequencies – fingerprint region – IR spectra of alcohols, phenols, amines, ethers, aldehydes, ketones, carboxylic acids, esters and amides	3	
	19	¹ H NMR: Chemical shift – Spin-spin splitting – Interpretation of ¹ H NMR spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, acetone, 1, 1, 2-tribromoethane, propanoic acid, ethyl acetate, toluene and acetophenone.	3	
	20	Structure elucidation of simple organic compounds using UV, IR and ¹ H NMR spectroscopic techniques (ethanol, acetone, acetophenone, acetaldehyde, acetic acid, propanoic acid and ethyl acetate	1	
V	Pra	acticals - Reactions of Organic Compounds (Any seven)	30	
	Ι	 Preparation of polymers eg: phenol formaldehyde, glyptal resin, nylon-6,6(Any two) Preparation of heterocycles like tetrahydrocarbazole, pyrazole(Any one) Preparation by multicomponent reactions-Biginelli Reaction Preparation of furfural from corn cobs Isolation of natural products - β-carotene /caffeine /Lycopene /Casein Determination of acid value, saponification value and iodine value of fats and oils. Determination of blood and urine sugar by chemical methods Preparation of soap by saponification of oils and fats. Preparation of spectral data of simple organic compounds. 	24	

	11. Identification of λ_{max} of organic compounds (eg:Azo		
	Dye)		
II	Open ended	6	
	-		

References

1. I. L. Finar, Organic Chemistry, Vol. I & II, Pearson Education.

2. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, 3rd Edn., Vishal Publishing Company Co., 2010.

3. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, A Textbook of Organic Chemistry, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

4. R. T. Morrison, R. N. Boyd, Organic Chemistry, 7th Edn., Pearson Education, New Delhi, 2013.

5. S. P. Bhutani, Chemistry of Biomolecules, Ane Books Pvt. Ltd., 2009.

6. O. P. Agarwal, Chemistry of Organic Natural Products, 30th Edn., Goel Publications, 2006.

7. V. R. Gowarikar, Polymer Chemistry, New Age International (P) Ltd., New Delhi, 2010.

8. Fred. W. Billmeyer, Textbook of Polymer Science, 3rd Edn., Wiley India, Delhi, 2008.

9. Jeol R. Fried, Polymer Science and Technology, Prentice Hall of India Pvt. Ltd., New Delhi, 1999.

10. M. S. Bhatnagar, Polymer Chemistry, S Chand and Company Pvt. Ltd., New Delhi, 2014

11. Jayashree Ghosh, A Textbook of Pharmaceutical Chemistry, 3rd Edn., S. Chand and

Company Ltd., New Delhi, 1999.

12. K. Singh, Chemistry in Daily Life, Prentice Hall of India, New Delhi, 2008.

13. Vogel's practical organic chemistry.

14. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, S D Sarkar and L Nahar, John Wiley and Sons, Ltd.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2						3	1	1	1	2	1	2
CO 2	2						3	1	2	1	2	2	2
CO 3	2						2	1	2	1	2	2	2
CO 4	2					2	2	1	1	1	2	2	2
CO 5	2	2					2	1	1	2	3	1	2
CO 6			3		1	1	3	1	1	2	3	2	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
 Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignme nt/Semin ar/Viva/Q uiz	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B. Sc. CHEMISTRY

Programme	B. Sc. Chemistry						
Course Title		PHYSICAL CHEMISTRY – III- CHEMICAL AND PHASE EQUILIBRIA, ELECTROCHEMISTRY AND PHOTOCHEMISTRY					
Type of Course	MAJOR						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	3	-	2	75		
Pre-requisites	CHE2CJ102 and CHE concepts in electroche chemistry course sime https://onlinecourses.	emistry and i ilar to	must have tak	ten NCERT p			
Course Summary	forward and reverse r underlying thermod equilibrium. Similar equilibria are also e electrochemical proce concepts. In the fou corresponding chemic	https://onlinecourses.swayam2.ac.in/nce19_sc17/preview The chemical reactions tend to reach a state of dynamic equilibrium, i. e., the forward and reverse reactions occur at equal rates. This course introduces the underlying thermodynamic principles that can explain this state of equilibrium. Similarly, thermodynamics of phase transitions and phase equilibria are also explained as the second module. In the third module, electrochemical processes are explained which also involves thermodynamic concepts. In the fourth module, interaction of light with molecules and corresponding chemical as well as physical processes are explained. The final module consists of practical experiments related to these four important					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To comprehend the concepts of law of mass action and chemical equilibria	U	F	Assignment/Test

CO2	To understand various phase transitions, construction of phase diagram and its importance in industry	Ар	Р	Assignment/Qui z
CO3	To apply the basic concepts of electrochemistry in constructing electrochemical cells	Ар	Р	Assignment/Qui z
CO4	To evaluate the pH of buffers, conduct potentiometric titrations and conductivity measurements	An	Р	Lab work/Quiz
CO5	To know the theory and working of new generation electrochemical power storage systems	U	С	Assignment/Test
CO6	To understand the photochemical principles and to apply the unknown concentration a given sample solution using colorimetry	Ар	Р	Discussion/Lab work
* - Rem	ember (R), Understand (U), Apply (Ap), An	alyze (An), Ev	valuate (E), Crea	ate (C)
# - Factu Knowle	ual Knowledge(F) Conceptual Knowledge (Odge (M)	C) Procedural 1	Knowledge (P)	Metacognitive

Module	Unit	Content	Hrs (45+30)	Marks
Ι		CHEMICAL EQUILIBRIUM	10	21
	1	Law of mass action, thermodynamic derivation of law of chemical equilibrium.	1	
	2	Relation between Gibbs free energy of reaction and reaction quotient.	1	
	3	Equilibrium constants and their quantitative dependence on temperature, pressure and thermodynamic derivation of relations between the various equilibrium constants K_p , K_c and K_x (using chemical potential).	3	
	4	Van't Hoff's equation - Le Chatelier principle and its application. Homogeneous and heterogenous equilibria. Clausius-Clapeyron equation - Applications to solid-liquid, Liquid-vapour, Solid- vapour equilibria	3	

	5	Ionic equilibrium: Ionic product of water, pH and pOH, Buffer action, pH of buffer solutions	2	
II		PHASE EQUILIBRIUM	15	33
	6	Concept of phase, Components and Degrees of freedom, Gibbs Phase Rule – Thermodynamic derivation.	3	
	7	Phase diagram for one component systems – Water, CO ₂	2	
	8	Two Component Systems - Phase diagrams for systems involving eutectic – KI/Ice – Freezing mixtures; Pattinson's process. Two-component systems with formation of congruent melting compound-MgZn ₂ . Fractional distillation. Azeotropes.	4	
	9	Partial miscibility of liquids, CST, Miscible pairs, steam distillation Three component systems, water-chloroform-acetic acid system, triangular plots, tie lines	4	
	10	Nernst distribution law: its derivation and applications in solvent extraction.	2	
III		15	33	
	11	Electrochemical cells. Origin of electrode potentials-half cell potential-standard hydrogen electrode, reference electrodes	2	
	13	Electrochemical series, applications	1	
	14	Cell potential, Nernst equation for electrode and cell potentials. Nernst equation for electrode potential and EMF of a cell	2	
	15	Relationship between free energy and electrical energy. Gibbs Helmholtz equation to galvanic cells.	2	
	16	Concentration cells: Concentration cells with and without transference – Liquid junction potential (LJP).	2	
	17	Application of EMF measurements- Solubility of sparingly soluble salt, determination of pH, Potentiometric titrations	2	
	18	Electrochemical power storage and sources- Primary batteries- Dry cell, Storage batteries- Lead acid battery, Ni- Cd battery, Li-ion battery (basic idea only), Fuel cells- Hydrogen-Oxygen fuel cell, Electrochemical capacitors and supercapacitors (basic idea only)	3	
	19	Corrosion of metals- electrochemical theory- Methods to prevent corrosion	1	

IV		PHOTOCHEMISTRY	5	11
	20	Interaction of light with matter and Beer-Lambert's law, Photochemical process and quantum yield	1	
	21	Photochemical hydrogen-chlorine and hydrogen-bromine reactions-Reasons for high and low quantum yield	2	
	22	Photophysical processes: Jablonski diagram – Fluorescence – Phosphorescence. Non-radiative processes: Internal conversion, inter system crossing and vibrational relaxation. Quenching of fluorescence – Stern – Volmer equation;	1	
	22	Photosensitization - Chemiluminescence. Bioluminescence, thermoluminescence.	1	
V		PHYSICAL CHEMISTRY- PRACTICALS-3	30	
		A minimum of 5 practical experiments out of which at least one each from sections 1, 2 and 3 must be performed and reported. For plots/graphs, suitable softwares may be used and printed hard copies may be presented. Practical records may be in handwritten or computer-printed form.		
		Section 1		
		 Construction of phase diagram & determination of eutectic composition and eutectic temperature: Naphthalene-biphenyl system, Naphthalene- diphenylamine system, Biphenyl- diphenylamine system. Section 2 	3	
		 2. Influence of KCl/NaCl impurity on miscibility temperature of phenol–water system and determination of concentration of given KCl/NaCl solution. Section 3 	3	
		 Verification of Beer-Lambert law for KMnO₄ and K₂Cr₂O₇ & determination of concentration of the given solution. 	3	
		4. Colorimetric Estimation of iron (in ferric alum solution)	3	
		 5. Colorimetric Estimation of chromium (in potassium dichromate solution) Section 4 	3	
		6. Conductometric titration of strong acid and strong	3	
		base.	3	
		 Potentiometric titration of strong acid and strong base. Preparation of Acidic Buffer and recording pH using 	3	
		pH meter.		

	9. Open ended	
	10. Open ended	3
		3
Ref	erences	
1.	P. W. Atkins, J. de Paula, <i>Atkin's Physical Chemistry</i> 8th Ed., Oxford University Press, 2006.	
2.	P. W. Atkins, J. de Paula The Elements of Physical	
	Chemistry 7 th Edn., Oxford University Press, Oxford, 2016.	
3.	B.R. Puri, L.R. Sharma, M.S. Pathania, <i>Principles of Physical Chemistry</i> , 46 th Edn., Vishal Publishing Company, New Delhi, 2013.	
Fur	ther Reading	
	C C	
	odule II)	
	 S. Glasstone and D H Lewis, <i>Elements of Physical Chemistry</i>, 2nd Edn., Macmillan & Company, UK, 1962. D. A. McQuarrie, J. D. Simon, <i>Physical Chemistry: A Molecular Approach</i>, University Science Books: Sausalito, CA; 1997. 	
(Me	odule III)	
	S. Glassstone, An Introduction to Electrochemistry. East-West Press Pvt. Ltd., New delhi, 2007. Praveen Tyagi, Electrochemistry, Discovery Publishing	
	House,2006.	
	odule III)	
8.	K.K. Rohatgi-Mukherjee, <i>Fundamentals of Photochemistry</i> , New Age International, 1978.	

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	-	-	3	2	3	2	2	-	2	-	1
CO 2	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 3	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 4	3	1	2	2	3	3	3	2	1	1	1	1	1
CO 5	3	2	_	1	3	3	3	2	1	-	3	-	1
CO 6	3	-	2	3	3	3	3	2	1	2	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment /viva	Practical skill evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark			\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. CHEMISTRY						
Course Title	THEORETICAL CHEMISTRY III - ADVANCED QUANTUM CHEMISTRY						
Type of Course	MAJOR						
Semester	VII						
Academic Level	400 - 499						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
Pre-requisites	A good understandin	g of the conc	cepts learned	in the course,	CHE3CJ201 -		
	Theoretical Chemis	try 1 – Basie	cs of Quantu	ım Chemistry	y - Postulates of		
	quantum mechanics		concepts, App	plication of th	ese concepts to		
	particle in a 1D box a						
Course Summary	In the course, CHE3CJ201, students learned the basic concepts of Quantum						
	Chemistry including the postulates of quantum mechanics and also learned						
	how to apply these concepts to different systems. This course further						
	develops the concept	• • • •	-	•			
	relevance. While do	-	-				
	application level topics like Molecular Spectroscopy and Group Theory.						
	Students also realize that for systems having more than one electrons (atoms						
	other than hydrogen and molecules) time-independent Schrodinger equation						
	could not be exactly solved. To overcome this difficulty, excellent						
	approximate techniques are formulated and they can be employed with the						
	help of computer programmes for solving any system of chemical relevance.Thus students are equipped with the basic concepts and methods of a very						
	-			-	•		
	significant research area called Computational Chemistry. Hands on						
	experience in computational chemistry can be gained through the practical						
	sessions given in mod	aule V.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	<i>recall</i> the quantum mechanical postulates as the fundamental principles of quantum chemistry.	R	F	Quiz/MCQ Test

CO2	<i>realize</i> the wave functions of hydrogen atom as atomic orbitals.	U	С	Assignment/Viva			
CO3	<i>apply</i> 1D Simple Harmonic Oscillator as a preliminary model for deriving the quantised energy levels of normal modes of vibration in molecules.	Ар	Р	Class Test/Problem solving sessions			
CO4	<i>relate</i> particle on a sphere as a starting model for deducing the quantised energy levels of rotation in diatomic molecules.	An	Р	Class Test/Problem solving sessions			
CO5	<i>justify</i> the use of approximate methods for deducing the wave functions and energy values of multi-electron systems.	Е	Р	Class Test/Problem solving sessions			
CO6	<i>propose</i> computational methods for solving real world problems in chemistry	С	М	Assignment/Seminar			
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit	Content	Hrs	Marks
		(40+30)		
Ι	Quan	tum Mechanics of Vibrational and Rotational Motions	15	31
	1	Review of the postulates of quantum mechanics.	1	
	2	One-dimensional simple harmonic oscillator (complete treatment):- Method of power series, Hermite equation and Hermite polynomials, recursion relation, wave functions and their plots, energy eigenvalues, important features of the problem, harmonic oscillator model and molecular vibrations.	3	
	3	Cartesian and spherical polar coordinates and their relationships.	1	
	4 Planar rigid rotor (or particle on a ring), the Phi-equation, solution of the Phi-equation.		2	
	5	One particle Rigid rotator (non-planar rigid rotator or particle on a sphere) (complete treatment): The wave	3	

	6	equation in spherical polar coordinates, separation of variables, the Phi-equation and the Theta-equation and their solutions, Legendre and Associated Legendre equations, Legendre and Associated Legendre polynomials.Spherical harmonics (imaginary and real forms), polar diagrams of spherical harmonics.	2	
	7	Quantization of angular momentum, space quantization, quantum mechanical operators corresponding to angular momenta $(\hat{L}_x, \hat{L}_y, \hat{L}_z, \hat{L}^2)$, commutation relations between these operators, Ladder operator method for angular momentum.	3	
	Section	ns from References: Section A		
II		Quantum Mechanics of Hydrogen-like Atoms	10	25
	8	Potential energy of hydrogen-like systems, the wave equation in spherical polar coordinates, separation of variables, the R, Theta and Phi equations and their solutions, Laguerre and associated Laguerre polynomials, atomic orbitals/wave functions of hydrogen-like atoms and their corresponding energy.	4	
	9	Radial and angular parts of atomic orbitals - Radial functions and radial plots, radial distribution functions and their plots, angular functions (spherical harmonics) and their plots.	2	
	10	The postulate of spin by Uhlenbeck and Goudsmith - Spin orbitals, construction of spin orbitals from orbitals and spin functions.	2	
	11	Pauli's principle of anti-symmetric wave functions - Slater determinants.	2	
	Section	ns from References: Section A		
III		Approximation Methods in Quantum Mechanics	12	28
	12	Many body problem and the need of approximation methods;	1	
	13	Independent particle model – Application to the ground state of helium atom.	1	
	14	Variation method – Variation theorem with proof, illustration of variation theorem using the trial function x	3	

		(a-x) for particle in a 1D-box, variation treatment of the ground state of helium atom.		
	15	Perturbation method – Time-independent perturbation method (non-degenerate case only), perturbation treatment of the ground state of helium atom.	3	
	16	Hartree's Self-Consistent Field method for atoms, Fock modification using spin orbitals & Hartree -Fock Self- Consistent Field (HF-SCF) method for atoms, the Fock operator;	4	
	Section	ns from References: Section A		
IV		8	14	
	17	Classification of Computational Chemistry methods – Molecular mechanics methods (the concept of the force field) and Electronic structure methods, ab initio and semi- empirical methods (Basic idea only).	2	
	18	Roothan's concept of basis functions - Slater type orbitals (STO) and Gaussian type orbitals (GTO).	1	
	19	Concept of electron correlation and post HF methods. (Elementary idea)	1	
	20	Basis set approximation in ab initio methods - classification of basis sets – minimal, double zeta, triple zeta, split-valence, polarization & diffuse basis sets, Pople- style basis sets, and their nomenclature.	2	
	21	Gaussian programme – The structure of a Gaussian input file, Types of keywords.	1	
	22	Specification of molecular geometry using a) Cartesian coordinates and b) Internal coordinates. The Z-matrix, Z-matrices of some simple molecules like H ₂ , H ₂ O, HCHO and NH ₃ .	1	
	Section			
V		Computational Chemistry Practical	30	
	1	 Single point energy calculations of simple molecules like H₂O and NH₃ at the HF/3-21G level of theory. The effect of basis set on the single point energy of H₂O and NH₃ using the Hartree-Fock method (3-21G, 6-31G, 	10	
		and NH ₃ using the Hartree-Fock method (3-21G, 6-31G, $6-31+G$, $6-31+G$ * basis sets can be used).		

2 5. Effect of basis set on the computation of H-O-H bond angle in H ₂ O using the HartreeFock method (3-21G, 6-31G, 6-31G, 6-31+G, 6-31+G* basis sets can be used). 8 6. Computation of the energy of HOMO and LUMO of formaldehyde and ethylene at the HF/6-31G level of theory. 7. Effect of substituent (F & Cl) on the geometric parameters (like C-C bond length) of ethylene at the HF/6-31G level of theory.	
3 8. Comparison of stability of cis-planar and trans-planar conformers of H ₂ O ₂ at the HF/6- 31G level of theory. 6 9. Comparison of stability of cis- and trans-isomers of difluoroethylene at the HF/6-31G* level of theory. 6	
Open - ended• Determination of hydrogen bond strength of H2O dimer and H2O trimer at the HF/6- 31+G* level of theory.6• Computation of the frequencies of normal modes of vibration of molecules like H2O, NH3 and CO2 at the HF/6-31+G* level of theory.6	
Sections from References: Section C	

Books and References:

Section A

- 1. I. N. Levine, *Quantum Chemistry*, 6th Edn., Pearson Education Inc., 2009.
- P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics, 4th Edn., Oxford University Press, 2005
- 3. Donald, A. McQuarrie, *Quantum Chemistry*, University Science Books, 1983 (first Indian edition, Viva books, 2003).
- 4. R.K. Prasad, Quantum Chemistry, 3rd Edition, New Age International, 2006

Section B

- 1. Frank Jensen, Introduction to Computational Chemistry, John Wiley & Sons, 1999.
- **2.** C. J. Cramer, Essentials of computational Chemistry: Theories and models, John Wiley & Sons 2002.

Section C

- 1. J. Foresman & Aelieen Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., 2000.
- 2. David Young, Computational Chemistry A Practical Guide for Applying Techniques to Real-World Problems", Wiley-Interscience, 2001.

Further reading

- 1. F.L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, 1968
- 2. Thomas Engel, Quantum Chemistry & Spectroscopy, Pearson Education, 2006
- 3. Errol G. Lewars, Computational Chemistry: Introduction to the theory and applications of molecular quantum mechanics, 2nd edn., Springer 2011.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	1	-	-	-	2	3				2		2
CO 2	2	3	-	-	-	2	3				1		2
CO 3	-	2		-	-	2	3		2	2	3	1	2
CO 4	-	2			-	2	3		1	2	3		3
CO 5	-	2	-	-	-	3	3				2	2	3
CO 6	-	3	-		-	3	3		2	2	3	2	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment/viva/seminar	Practical skill Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark		

CALICUT UNIVERSITY – FOUR-YEAR UNDER

GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc Chemistry						
Course Title	INORGANIC CHE	MISTRY-V					
Type of Course	MAJOR						
Semester	VII						
Academic Level	400-499						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
Pre-requisites	Theories of acids and	bases, Bond	ling in dibora	ne, Atomic nu	mber, mass		
	number, isotopes, Ba	sic idea abou	t nuclear rad	ioactivity, Nuc	clear fission and		
	fusion, Basic concept	ts in Coordin	ation Chemis	stry, Knowledg	ge about magnetic		
	properties of complex	xes					
Course Summary	This course enables the students to develop knowledge about HSAB principle,						
	Concepts of superaci	ds, Bonding	and structure	in higher bora	nnes.		
	It deals with detailed	nuclear shell	models, Nuc	lear reactions,	Neutron activation		
	analysis and Radiation chemistry						
	It covers the electronic spectra of complexes and explanation of d-d transition						
	It gives understanding about the various magnetic properties and its calculation						
	It enables the students to familiarise with various spectral techniques that is used						
	to characterise the me	etal complexe	es like ESR, I	NMR and Mos	ssbauer		
	It covers the different types of reactions that takes place in complexes and their						
	explanations						
	This course enables t	he students t	o apply knov	vledge in the c	qualitative analysis		
	of mixture of ions and develop skill for separation and estimation of mixture of						
	ions						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Demonstrate a deep	U	С	Instructor-created exams /
	understanding of HSAB			Assignments/Quiz
	principle, Super acid concepts			
	and bonding structure in higher			
	boranes and boron cluster			
	compounds.			
CO2	Explain detailed nuclear shell	U	С	Instructor-created exams /
	models, nuclear reactions,			Assignments/ seminar
	neutron activation analysis and			presentations
	radiation chemistry.			
CO3	Comprehend electronic spectra	U	С	Class test
	of complexes and understand			/Assignment /
	various magnetic properties of			seminar/Quiz
	complexes.			
CO4	Grasp the reactions of	Ар	С	Assignment/Seminar/Test
	coordination compounds, the			
	mechanisms and apply			
	theoretical understandings.			
CO5	To understand chemistry of	U	C	Assignment/Seminar/ Test
	excited state coordination			
	compounds			
CO6	Apply practical skills in the	An	Р	Viva Voce/Observation of
	analysis of mixture of metal			practical skill
	ions, specifically rare earth			
	elements and separation and			
	estimation of binary mixture of			
	ions in solution.			
* - Rem	nember (R), Understand (U), Apply	(Ap), Analyse	(An), Evaluate	e (E), Create (C)
# - Fact	ual Knowledge(F) Conceptual Kno	wledge (C) Pro	ocedural Know	ledge (P) Metacognitive
Knowle	edge (M)			

Module	Unit	Content	Hrs (45+30)	Marks
Ι	A	ACID BASE CONCEPTS AND COMPOUNDS OF BORON	10	21
	1	Classification of acids and bases as Hard and Soft	1	
	2	HSAB principle. The theoretical basis of hardness and softness	1	
	3	The Drago-Wayland equation, E and C parameters- Symbiosis, Applications of HSAB concept, Super acids	2	
	4	Electron-deficient compounds- Boron hydrides- Preparation, Reactions, Structure, and Bonding. Styx numbers-Closo, nido, arachno polyhedral structures.	3	
	5	Boron cluster compounds-Wade's rule, Polyhedral borane anion- Carboranes, Metallaboranes and Metallacarboranes.	3	
II		NUCLEAR AND RADIATION CHEMISTRY	7	16
	6	Structure of nucleus: Shell, liquid drop, Fermi gas, Collective and Optical models. Nuclear reaction: Bethe's notation of nuclear process	2	
	7	Types- Reaction cross section, Photonuclear and Thermonuclear reactions. Nuclear fission: Theory of fission, Neutron capture cross section and Critical size, Nuclear fusion.	2	
	8	Neutron activation analysis.	1	
	9	Detection and measurement of radiation- GM and Scintillation counters, Radiolysis of water, Radiation hazards, Radiation dosimetry.	2	
III		SPECTRAL AND MAGNETIC PROPERTIES OF	18	40
		COORDINATION COMPOUNDS		
	10	Spectroscopic ground state, Terms for d^n configuration, Selection rule for d-d transition, Effect of ligand field on R S terms, O_h and T_h complexes.	2	

	11	Orgal diagram, Spectra of 3d (d ¹ ,d ² ,d ³) metal ions complexes,	2	
		Racah parameter, Charge transfer parameter (LMCT. MLCT) with		
		example.		
	12	Types of Magnetic properties: Paramagnetism and Diamagnetism,	2	
		Curie and Curie- Weiss laws. The μ_J , μ_{L+S} , and μ_S expressions		
	13	Orbital contribution to magnetic moment and its quenching, Spin-	3	
		orbit coupling, Temperature independent Paramagnetism, Anti		
		ferromagnetism- Types and exchange pathways. Determination of		
		magnetic moment by Gouy method.		
	14	ESR spectra – Application to copper complexes.	3	
	15	NMR spectroscopy for structural studies of diamagnetic metal	3	
		complexes from chemical shift and spin- spin coupling.		
	16	Mossbauer spectroscopy- the Mossbauer Effect, Hyperfine	3	
		interactions (qualitative treatment). Application to Iron and Tin		
		compounds		
IV	REACTIONS OF COORDINATION COMPOUNDS		10	21
	17	Ligand substitution reactions, Labile and Inert complexes, Rate law,	2	
		Classification of mechanisms- D, A and I mechanisms. Substitution		
		reactions in Octahedral complexes.		
	18	The Eigen-Wilkins Mechanism. Fuoss-Eigenequation. Aquation and	2	
		base hydrolysis- Mechanism. Substitution reactions in square planar		
		complexes		
	19	The Trans effect- Applications and theories of Trans effect, The cis	1	
		effect.		
	20	Classification of redox reaction mechanisms. Outer sphere and Inner	1	
		sphere mechanisms, Marcus equation, Effect of the bridging ligand.		
	21	Methods for distinguishing outer- and inner-sphere redox reactions,	2	
1				
		Photochemical reactions of metal complexes.		
	22	Photochemical reactions of metal complexes. Prompt and delayed reactions, Excited states of metal complexes-	2	
	22		2	
	22	Prompt and delayed reactions, Excited states of metal complexes- Inter ligand, ligand field, charge transfer, and delocalized states	2	
	22	Prompt and delayed reactions, Excited states of metal complexes-	2	

V	C	QUALITATIVE MIXTURE ANALYSIS INCLUDING LESS	15*2		
	СОМ	IMON CATIONS and ESTIMATION OF BINARY MIXTURES	(30)		
	23				
		Separation and identification of four metal ions including			
	Li. (Eliminating acid radicals not present). Confirmation by				
		a) Separation and estimation of binary mixtures of ions in			
		solution $[Cu^{2+}, Ni^{2+}, Fe^{2+}, Ca^{2+}, Mg^{2+} and (Cr_2O_7)^{2-}]$ by			
		volumetric, colorimetric or gravimetric methods. Only one			
		of the components to be estimated. Any two combinations			
		can be performed			

REFERENCES:

1. N.N. Greenwood and A. Earnshaw, *Chemistry of Elements*, 2/e, Elsevier Butterworth-Heinemann, 2005.

2. J. E. Huheey, E. A. Keiter, R. L.Keiter. O.K.Medhi. *Inorganic Chemistry, principles of structure and reactivity*, Pearson Education, 2006.

3. G.L.Miessler, D.A.Tarr, Inorganic Chemistry, Pearson, 2010.

- 4. D.F.Shriver, P.W.Atkins, Inorganic Chemistry, Oxford University Press, 2002
- 5. William W Porterfield, Inorganic Chemistry-Aunified approach, AcademicPress, 2005.
- 6. Keith F Purcell, John C Kotz, *Inorganic Chemistry*, Cengage Learning, 2010.

7. James E House, *Inorganic Chemistry*, Academic Press, 2008.

- 8. H.J.Arnikar, Essentials of Nuclear chemistry, New Age International, 2005.
- 9. Friedlander and J.W.Kennedy, Introduction to Radiochemistry, John Wiley and Sons, 1981.

10.S. Glastone, *Source Book on Atomic Energy, 3rd*edn., Affiliated East-West Press Pvt.Ltd., 1967.

11. B.Douglas, D.McDaniel, J.Alexander, *Concepts and Models of Inorganic Chemistry*, Wiley Student Edition, 2006.

12. A.W.Adamson and P.D.Fleischauer, Concepts of Inorganic Photochemistry, Wiley.

13. F.A.Cotton and G.Wilkinson, Advanced Inorganic Chemistry, Wiley.

14. A.Earnshaw, Introduction to Magnetochemistry, Academic Press, 1968.

15 R.L.Dutta and A.Shyamal, *Elements of Magnetochemistry*, S.Chand and Co.1982.

16. A.E. Martell, Coordination Chemistry, Vol.I

17. R.S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East- West Press Pvt. Ltd.

PSO PSO PSO PSO PS PS PO1 PO2 PO3 PO4 PO5 PO6 PO7 1 2 3 4 O 5 06 CO 3 2 3 2 3 2 2 3 1 _ _ _ _ 1 CO 3 2 3 2 3 2 1 3 1 _ _ _ _ 2 CO 3 2 2 2 3 2 1 3 2 _ _ _ _ 3 CO 3 2 2 3 3 2 1 3 1 _ _ _ _ 4 CO 3 2 1 2 3 3 2 1 3 1 _ _ _ 5 CO 2 3 3 3 3 2 2 3 2 3 1 3 _ 6

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

	Internal Exam	Assignment /viva	Practical skill evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	ORGANIC CHEMISTRY V							
Type of Course	MAJOR							
Semester	VII	VII						
Academic	400 - 499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Preliminary idea about basics of stereochemistry, C-C bond formation, photochemistry, free radical mechanisms, organic reactions and reagents.							
Course Summary	This course explores the basics of stereochemistry, C-C bond formation, photochemistry, free radical mechanisms, organic reactions and reagents.							

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand and apply concepts of stereochemistry, conformations and asymmetric synthesis	U	C	Test /Seminar
CO2	To apply principles of physical organic chemistry including acidity, basicity and reaction mechanisms	U	р	Discussion/ Assignment
CO3	To demonstrate ability to generate carbanions and conduct a variety of condensation and other organic reactions	An	Р	Quizzes/Test
CO4	To analyze the role of photochemistry in chemical	Ар	Р	Discussion/Seminar /Assignment

	reactions and apply concepts to radical chain reactions						
CO5	To Conduct common organic reactions and apply select reagents in redox and substitution reactions	Ар	Р	Assignment/Test			
CO6	To empower students in setting up the reaction and purification process	Ар	Р	Lab work/Viva			
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Module	Unit	Content	Hrs	Marks		
Ι	Stereochemistry III					
	1	Optical isomerism shown by molecules have stereocenters other than C, N, P, S. Axial chirality - Planar chirality and helicity. Nomenclature - Prochirality, Re, Si Nomenclature.	3			
	2	Stereoselective and stereospecific reaction - Effect of configuration on Substitution - Addition and Elimination reactions.	2			
	3	Conformations of 1,2 disubstituted compounds - Carbonyl compounds - Mono and disubstituted cyclohexanes, A-value -Decalin, Bridged bicyclic systems, Anomeric effect, The effect of conformation on reactivity.	4			
	4	Asymmetric synthesis: - Resolution methods - Chiral pool approach - Chiral auxiliary approach - Chiral reagents - Chiral catalyst. (SAMP/RAMP method - Sharpless epoxidation)	4			
II		10	22			
	5	Acidity and basicity of organic compounds - Equilibrium - Rate- Rate limiting step - Intermediates and transition states, Reaction profile diagrams, Kinetic and Thermodynamic control of reactions.	5			
	6	Hammond postulate Curtin-Hammett principle.	1			
	7	Methods of determining Reaction Mechanisms	1			
	8	Isotopic labeling, Kinetic isotopic effects, Crossover studies, Detection of intermediates	3			
III		Formation of C-C bonds	13	28		
	9	Generation of carbanions from carbonyl compounds, Lithium enolates, Enamines and Silyl enol ethers, O and C-alkylation.	2			

	10	Crams's rule and Felkin Ahn model	2	
	11	Aldol condensation from enolates - Enamine and silyl enol ethers, Mukyamma aldol reaction - Zimmerman Traxler model, Intramolecular reactions.	3	
	12	Claisen condensation - Perkin Reaction - Knovenagel reaction, Conjugate addition	2	
	13	Robinson annulation - Wittig and related reactions,Reactions of enols - Acid-mediated reactions of aldehydes and ketones.	2	
	14	Organometallic reagents- Grignard reagents - Alkyl lithium agents, Preparation and its reaction with carbonyl compounds and nitriles.	2	
IV		Photochemistry and free radical reactions	9	20
	15	Photochemistry : Fate of an excited molecule - Chemical reactions of excited molecules,	1	
	16	Photochemistry of carbonyl compounds: Norrish type I and II cleavage – α -cleavage, γ -hydrogen abstraction, Paterno Buchi reaction.	2	
	17	Isomerization (cis-trans isomerization in retina, isomerization in benzene), Photosensitization, Di-pi-methane rearrangement, Oxa-di-pi-methane rearrangement.	2	
	18	Free radical reactions: Radical chain reaction, NBS allylic bromination, Acyloin reaction, HLF reaction, Hunsdiecker-Borodin reaction	2	
	19	Generation of C radicals from alkyl halides using AIBN-tributyltin hydride and their cyclizations (5-exo mode only). Radical inhibitors, methods of detecting radical intermediates.	2	
V		Practicals	30	
	1.	Introduction to organic lab	4	
	2	 Double stage preparations (iodobenzene from aniline/benzil benzilic acid/triphenyl imidazole and its dimerization/ Hydroquinone-benzoquinone anthracene/ caprolactam/ bromoaniline from acetanilide or any reaction based on oxidation/reduction/condensation/rearrangement (purification of the prepared compounds by recrystallization and measurement of melting point) Column chromatography 	20	
		3. Steam distillation		
		4. Thin layer chromatography		
	3	Open ended	6	

References

- 1. Organic Chemistry, by Jonathan Clayden, Nick Greeves, Stuart Warren, Oxford University Press
- 2. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Wiley
- 3. Organic Chemistry Paperback, Francis Carey, McGraw-Hill Education
- 4. Advanced Organic Chemistry, David E. Lewis, Oxford Univ Pr; Illustrated edition
- 5. Principles of Organic Synthesis, R. O. C. Norman & J. M. Coxon, 3rd Ed., CRC press, 2000.
- 6. Organic Mechanisms- Reactions, Stereochemistry and Synthesis, R. Bruckner, Springer 2007.
- 7. The Art of Writing Reasonable Reaction Mechanisms, R. B. Grossman, 3rd Ed., Springer, 2019.
- 8. Modern Physical Organic Chemistry, E. V. Anslyn & D. A. Dougherty, University Science Books, 2015.
- 9. Name reactions J J Li, Springer.
- 10. Stereochemistry of Organic Compounds Ernest L. Eliel and Samuel H. Wilen,
- 11. Stereochemistry of Organic Compounds, D. Nasipuri, 4th Ed., New Age Publications, 2020.
- **12.** Stereochemistry: Conformation and Mechanism, P S Kalsi, New Age International Publishers
- 13. Volgel's practical organic chemistry
- 14. Quinone Synthesis and a Visual Introduction to Column Chromatography: An Undergraduate Experiment, Danielle L. Pearson and Russell R. A. Kitson, J. Chem. Educ. 2022, 99, 3731–3734, https://doi.org/10.1021/acs.jchemed.1c00940

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-	3		2		2		2
CO 2	2		-	-	-	-	3		2		3		2
CO 3	2	-		-	-	-	3		2		3		3
CO 4	2	-			1	-	3		2		2		3
CO 5	3		-	-	-	-	3		1		2		3
CO 6	-	-	3		-	-	3		2		2		3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignment/ viva/seminar	Practical skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	PHYSICAL CHEMISTRY IV – STATISTICAL THERMODYNAMICS							
Type of Course	MAJOR							
Semester	VII							
Academic Level	400 - 499							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	CHE2CJ102, CHE3C quantum chemistry, c			•	a about			
Course Summary	The bulk properties of matter are linked with its microscopic properties and it is important to consider a molecular approach to quantitatively explain the physical and chemical properties. This course explores the basics of statistical thermodynamics and thermodynamics of irreversible processes and solutions, molecular dynamics theories.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To Understand and apply concepts of statistical thermodynamics and quantum statistics in chemical applications	U	С	Test /Seminar/Assignment
CO2	To Calculate thermodynamic properties using partition functions	U	Р	Test/ Assignment/Seminar
CO3	To Apply thermodynamic principles to solutions	An	Р	Quiz/Seminar/Assignm ent

	and comprehend irreversible processes						
CO4	To understand theories of molecular reaction dynamics	U	С	Test/Seminar /Assignment			
CO5	To analyse potential energy surfaces in order to understand reaction dynamics	An	C	Assignment/Test			
CO6	To apply concepts of statistical thermodynamics in simulation experiments	Ap	М	Lab work/Viva			
# - Fac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks
Ι		STATISTICAL THERMODYNAMICS- I	15	26
	1	Fundamentals: Concept of distribution, thermodynamic probability and most probable distribution.	2	
	2	Ensembles, statistical mechanics for systems of independent particles and its importance in chemistry	2	
	3	Thermodynamic probability & entropy, idea of microstates and macrostates, statistical weight factor (g)	2	
	4	Sterling approximation, and Maxwell- Boltzmann distribution of molecular energies.	2	
	5	The molecular partition function and its relation to the thermodynamic properties, derivation of third law of thermodynamics, equilibrium- constant & equi-partition principle in terms of partition functions, factorisation of the molecular partition function into translational, rotational, vibrational and electronic parts, the corresponding contributions to the thermodynamic properties.	4	
	6	Relation between molecular & molar partition functions, Evaluation of partition functions and thermodynamic properties for ideal mono- atomic and diatomic gases.	3	
II		STATISTICAL THERMODYNAMICS- II	10	26
	7	Quantum Statistics: Bose-Einstein distribution law, Bose- Einstein Condensation, application to liquid helium.	3	

	8	Fermi - Dirac distribution law, application to electrons in metals.	2				
	9	Relationship between Maxwell-Boltzmann, Bose-Einstein, and Fermi- Dirac statistics.	2				
10 Heat capacities of solids: Classical and quantum theories, Einstein's theory of atomic crystals and Debye's modification.							
III	T	HERMODYNAMICS OF SOLUTIONS AND IRREVERSIBLE PROCESSES	15	30			
	11	Fugacity, Activity, Activity coefficient, Standard state of substance (for solute and solvents), Duhem-Margules equation and its applications	3				
	12	Thermodynamics of ideal solutions, Deduction of the laws of Raoult's ebullioscopy, cryoscopy, and osmotic pressure.	2				
	13	Non ideal solutions, Deviations from Raoult's law.	2				
	14	Excess functions: Excess free energy, excess entropy, excess enthalpy, excess volume.	2				
	15	Simple examples of irreversible processes, general theory of non- equilibrium processes	2				
	16	Entropy production, The phenomenological relations, Onsager reciprocal relations	2				
	17	Application to the theory of diffusion, thermal diffusion, thermo- osmosis and thermo- molecular pressure difference, electro-kinetic effects, the Glansdorf-Pregogine equation.	2				
IV		MOLECULAR REACTION DYNAMICS	5	16			
	18	Reactive encounters: Collision theory	1				
	19	Diffusion controlled reactions	1				
	20	The material balance equation	1				
	21	Potential energy surfaces: Attractive and repulsive surfaces	1				
	22	Theories of unimolecular reactions: Rice -Ramsperger and Kassel (RRK) model.	1				
V		Practicals	30				
	A mir recor	nimum of three experiments/simulations must be performed and ded					
			5				

	By using MS Excel, Scilab, Python or any other suitable programs, simulate and plot the probability of macrostates in coin tossing experiments	5
	By using a suitable computer program (MS Excel, Scilab or other) determine and plot Maxwell speed distribution function for different gases	5
3.	By using a suitable computer program (MS Excel, Scilab or other), determine and plot Maxwell-Boltzmann, Bose-Einstein & Fermi-Dirac distribution functions	
	Simulation of specific heat of solids (diamond) using Dulong Petit,	5
	Einstein and Debye model	5
	Scan around a single bond in N_2 molecule to find out the minimum energy in the PE diagram by using Gaussian, ORCA, Gamess or similar performance (IE method. (21C hosis act))	
6.	similar packages. (HF method, 6-31G basis set) Calculation of Potential energy surface of H ₂ O molecule with respect to change of bond angles and bond distances by using Gaussian,	5
	Gamess or similar packages (HF method, 6-31G basis set) Calculation of Potential Energy Surface of ethane by changing the	5
	dihedral angle, in order to understand the most stable conformation by	
	using Gaussian, Gamess or similar packages	5
	Calculation of Potential Energy Surface of n-butane by changing the dihedral angle, in order to understand the most stable conformation by	5
	using Gaussian, Gamess or similar packages	5
	Open ended	
10.	Open ended	
]	References	
	Module I and II	
	 Physical Chemistry: Thermodynamics, Structure and Change, 10th Edition, P. Atkins and J. de Paula, (W. H Freeman and Company, New York) D. A. McQuarrie, J. D. Simon, Physical Chemistry – A 	
	 Molecular Approach, (Viva, 2001.) 3. T. Engel, P. Reid, Thermodynamics, Statistical Thermodynamics & Kinetics, Pearson Education, Inc: New 	
	 Delhi, 2007. 4. J. Rajaram, J. C. Kuriacose, Chemical Thermodynamics, Classical, Statistical and irreversible, Pearson Education, New Delhi, 2013. 	
	5. A. Ben-Naim, Statistical Thermodynamics Based on Information: A Farewell to Entropy, World Scientific, Singapore	

Module III and IV	
6. Physical Chemistry: Thermodynamics, Structure and Change, 10th Edition, P. Atkins and J. de Paula, (W. H Freeman and Company, New York)	
7. D. A. McQuarrie, J. D. Simon, Physical Chemistry – A	
Molecular Approach, (Viva, 2001.)	
8. T. Engel, P. Reid, Thermodynamics, Statistical Thermodynamics & Kinetics, Pearson Education, Inc: New Delhi, 2007.	
 J. Rajaram, J. C. Kuriacose, Chemical Thermodynamics, Classical, Statistical and irreversible, Pearson Education, New Delhi, 2013. 	
10. K. Laidler, Chemical Kinetics, 3rd Edn., Pearson Education,	
New Delhi, 2004. Module V	
11. https://www.scilab.org/	
12. Wolfram Demonstrations Project	
13. https://www.orcasoftware.de/tutorials_orca/#	
14. Advanced Physical Chemistry: Practical Guide, C. Arora and	
S. Bhattacharya, Bentham Books, UAE, 2022	
15. H. Singh, Resonance, December 1996, Page 49-59, A Simple	
Experiment to Study the Statistical Properties of a Molecular	
Assembly with Two or Three State Dynamics	
Further reading	
16. G.S. Rush Brooke, <i>Statistical mechanics</i> , Oxford UniversityPress.	
17. T.L. Hill, <i>Introduction to statistical thermodynamics</i> , Addison Wesley.	
18. K. Huary, <i>Statistical mechanics, Thermodynamics and Kinetics</i> , JohnWiley.	
19. O.K.Rice, <i>Statistical mechanics, Thermodynamics and Kinetics</i> , Freeman and Co.	
20. F.C. Andrews, <i>Equilibrium statistical mechanics</i> , John Wiley and sons, 1963.	
21. M. C. Guptha, <i>Statistical Thermodynamics</i> , Wiley eastern Ltd., 1993	
 22. Pigoggine, An introduction to Thermodynamics of irreversible processes, Interscience Publisher 	
 23. B.G. Kyle, <i>Chemical and Process Thermodynamics</i>, 2nd Edn, Prentice Hall of India 	
24. K.J.Laidler, J.H.Meiser and B. C. Sanctuary, <i>Physical</i>	
<i>Chemistry</i> , Houghton Mifflin Company, New York,2003.	
25. Richard I. Masel, <i>Chemical Kinetics and Catalysis</i> , Wiley	
Interscience,2001	

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	-	-	3	2	3	2	2	-	2	-	1
CO 2	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 3	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 4	3	2	1	-	3	3	3	2	1	-	1	-	1
CO 5	3	3	2	1	3	3	3	2	1	-	3	-	1
CO 6	3	3	1	3	3	3	3	2	1	2	3	2	3

Correlation Levels:

Level Correlation				
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

	Internal Exam	Assignment /viva	Practical skill evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	INSTRUMENTAL METHODS OF ANALYSIS							
Type of Course	MAJOR							
Semester	VII							
Academic	400-499	400-499						
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	1. Fundamentals	of Electroch	nemistry.					
	2. Fundamentals	of Spectros	copy.					
	3. Fundamentals	of Analytica	al Chemistry.					
Course	This course provide	es a thorou	gh overview	v of essentia	al analytical			
Summary	techniques in chemi	istry and m	aterials scien	nce, covering	separation,			
	spectroscopy, surfac	e characteri	ization, and	thermal/elec	troanalytical			
	methods. The course emphasizes practical applications, preparing							
	students for precise c	hemical anal	ysis in vario	us scientific a	nd industrial			
	fields. The practical	module ensu	ares hands-or	n-training on	some of the			
	important methods.							

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the basic principles and instrumentation of chromatographic techniques for the separation of mixture of chemicals (products)	Ар	Р	Instructor-created exams / Quiz /Assignment
CO2	To identify the instrumentation and applications of important spectroscopic methods for chemical analysis.	Ар	Р	Class test /Assignment /Quiz
CO3	To know the role of imaging techniques to study various materials and surfaces.	U	С	Assignment/ Class test
CO4	To understand and analyse the principles and instrumentation of various thermal analytical methods	An	С	Assignments /Seminar presentation

CO5	To understand and apply electroanalytical methods	Ар	С	Assignments /Seminar			
				presentation			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metacognitive Knowledge (M)							

Module	Unit	Content	Hrs	Marks
Ι	Separation	techniques	6	10
	1	Brief outline of Paper and Thin-Layer Chromatography (TLC),	1	
	2	Ion exchange chromatography: Principle, cation and anion exchange resins, its application in separation of ions.	1	
	3	Gas Chromatography (GC) – Principle, GC Instrumentation – Injectors, column, detectors (TCD, FID, ECD) and applications.	1	
	4	Hyphenated GC Technique - GC-MS	1	
	5	High Performance Liquid Chromatography (HPLC): Principle, instrumentation - Column, stationary phases, column packing, mobile phase, detectors. Effects on Separation of Composition of the Mobile Phase and applications	2	
II	Spectroscop	ic and related methods	15	36
	6	UV-Visible Spectrometry: Beer-Lambert's law, Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instruments. Difference between Colorimeter & spectrophotometer.	2	
	7	Flame emission and Atomic Absorption Spectroscopy (AAS): Introduction, principle. Instrumentation and Analytical applications.Inductively Coupled Plasma-Atomic/Optical emission spectroscopy (ICP-AES or ICP-OES)- theory, instrumentation and applications. ICP-MS method. Analytical Applications	3	
	8	Fourier transform-Infrared spectroscopy (FT-IR)- FT-IR instrumentation and analytical applications. Raman spectroscopy, Principle, instrumentation, Surface enhanced Raman Spectroscopy (SERS), Raman microscopy	3	

	9	Fluorescence spectroscopy, Theory, Instrumentation and Analytical applications, Confocal laser-scanning microscopy	2	
	10	FT-NMR spectroscopy, basic principle, instrumentation, spectrometers with different frequencies of operation, ESR/EPR spectroscopy, ENDOR (Electron-Nuclear double resonance) technique	3	
	11	Mass spectrometry, Instrumentation and applications, MALDI-TOF method and instrumentation	2	
III	Microscopy	, Photoelectron spectroscopy and X-ray diffraction	14	32
	techniques 12	Scanning Electron Microscopy (SEM) Instrumentation, Operating Principle, Secondary - Electron Images, Backscattered- Electron Images, operating conditions and sample preparation.	2	
	13	Transmission Electron Microscopy (TEM): Instrumentation, General Design, Resolution, Electron Sources, TEM grids, electron lenses, Bright and Dark field images, Applications.	2	
	14	Scanning probe microscopy methods: Principle, instrumentation and applications of Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM).	3	
	15	PhotoelectronSpectroscopyTechniques-X-RayPhotoelectronSpectroscopy-InstrumentationforXPS,SampleIntroductionandHandlingforSurfaceAnalysis,AnalyticalApplicationsofXPS,AugerElectronSpectroscopy-InstrumentationandApplications.	3	
	16	Powder and Single crystal X-ray diffraction, basic principle, instrumentation and applications.	4	
IV	Thermal an	d Electroanalytical methods of analysis (12 h)	10	20
	17	Thermogravimetry-TGAInstrumentation,AnalyticalApplicationsofThermogravimetry,DerivativeThermogravimetry,Sources of Error in Thermogravimetry.	2	
	18	Differential Thermal Analysis (DTA) - Instrumentation - Analytical Applications of DTA.	1	
	19	Differential Scanning Calorimeter (DSC), Instrumentation and applications.	1	
	20	Classification of electroanalytical methods, Potentiometry- Three and Two electrode systems, Types of indicator Electrodes. Analytical Applications of Potentiometry.	2	
	21	Coulometry – Electrogravimetry, Instrumentation for Electrogravimetry and Coulometry, Applied Potential, Analytical Determinations Using Faraday's Law.	2	

	22	Cyclic Voltammetry, Theory Instrumentation and applications	2
V	Practicals		30
	Open Ended	At least 5 practical experiments must be performed from the given below list.	
		1. Evaluation of the refractive index of the given liquid and also find its molar refractivity	
		2. Determination of the order of a reaction and velocity constant for the inversion of cane sugar by acid by polarimetric method	
		3. Study of the complex formation between ferric ion and salicylic acid to find the formula and stability constant of the complex via colorimetry	
		 Preparation and characterization of silver/gold nanoparticles by uv-vis spectroscopy 	
		 Estimation of band-gap for Cu nanoparticles using absorption spectroscopy 	
		 Estimation of glucose via enzymatic method by using colorimetry 	
		 Determination of Na and K ions in unknown solutions via flame photometric method 	
		 Determination of calcium content of milk samples/unknown Calcium salt solutions using flame photometer 	
		 Thermogravimetric analysis of a salt hydrate (such as CaC₂O₄. H₂O, CuSO₄.5 H₂O) 	

[]	
	10. Powder X-ray diffraction measurement, indexing of patterns and determination of unit cell parameters of crystalline solids (like NaCl, KCl or any other)
	11. Synthesis of nanoparticles and estimation of crystallite size from powder X-ray diffraction patterns by Scherrer equation.
	12. Determination of the formal reduction potential (E ₀) and n values for the [Fe(CN) ₆] ^{3-/} [Fe(CN) ₆] ⁴⁻ couple in 0.1M KNO ₃ from the 2mM cyclic voltammogram
	 13. Determination of the concentration of unknown K₃[Fe(CN)₆]solution using a calibration graph of concentration vs. peak height from cyclic voltammogram
	14. Separation of a mixture of amino acids by Thin Layer Chromatography (TLC) and identify the test amino acids by measuring their R _f values.
	15. Preparation of Silica nanoparticles by a one-sep process (Stöber process) and morphological analysis via scanning elecron microscopy
	16. Open ended
	17. Open ended
	18. Open ended

References:

D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry, a.
 9th Edn., Cengage Learning., 2014.

2. D.A. Skoog, F.J. Holler, T.A. Nieman, Principles Of Instrumental Analysis, Engage Earning India Edn.

3. H. H. Willard, L. L. Merrit, jr., J. A. Dean and F. A. Settle, Jr., Instrumental Methods of Analysis, 6th ed., CBS 1986.

4. Vogel's Text Book of Quantitative Organic Analysis, 2th ed. ELBS

5. Dr. B. K. Sharma, Instrumental Methods of Chemical Analysis, 3rd Edition 2004.

6. James W. Robinson, Eileen M. Skelly Frame, George M. Frame II, Undergraduate Instrumental Analysis, Seventh Edition, CRC Press.

Mapping of COs with PSOs and POs :Correlation Levels:

	PSO 1	PSO 2	PSO 3	PSO 4	PS O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	-	3	3	2	3	2	2	-	2	-	1
CO 2	3	2	-	3	3	2	3	2	1	-	2	-	1
CO 3	3	2	-	2	3	2	3	2	1	-	2	-	1
CO 4	3	2	1	2	3	3	3	2	1	-	1	-	1
CO 5	3	3	2	2	3	3	3	2	1	-	3	-	1
CO 6	3	3	1	3	3	3	3	2	1	2	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

	Internal Exam	Assignment /viva	Practical skill evaluation	End Semester Examinations
CO 1		\checkmark	\checkmark	\checkmark
CO 2		\checkmark	\checkmark	\checkmark
CO 3		\checkmark	\checkmark	\checkmark
CO 4		\checkmark	\checkmark	\checkmark
CO 5		\checkmark	\checkmark	\checkmark
CO 6		\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme **B.Sc** Chemistry Course Title **INORGANIC CHEMISTRY-VI** Type of Course MAJOR/MINOR Semester VIII 400-499 Academic Level **Course Details** Credit Practical Total Hours Lecture Tutorial per week per week per week 4 4 60 _ **Pre-requisites** Bonding in Coordination compounds Classification of ligands Bonding in CO molecule Basic idea of IR spectroscopy Metal ions in biological systems **Course Summary** This course explains in detail the structure, bonding and reactions of organometallic compounds. It deals with the bonding in metal carbonyls and provides application skill in evaluating the bonding and structural characteristics of metal carbonyls using IR spectroscopy. It identifies the application of organometallic compounds. It describes different organometallic polymers. It evaluates bioinorganic compounds and their biological actions

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Equip with comprehensive understanding of organometallic compounds	U	С	Instructor-created exams / Assignments/Quiz
CO2	Identify bonding, synthesis, reactions and applications of metal carbonyls and apply IR spectroscopy to analyse structure and bonding characteristics of metal carbonyls	An	Р	Assignment / seminar/quizzes/Class test

CO3	Apply organometallic compounds in synthetic chemistry	Ар	С	Assignment/Seminar/Class test
CO4	Provide with deep understanding of the interplay between bio inorganic compounds and biological systems	U	С	Class Test/ Assignment/Viva Voce
CO5	Identify and distinguish different categories of organometallic polymers and understand their applications	U	С	Assignment/class test/Seminar
				, Evaluate (E), Create (C)
	ual Knowledge(F) Conc dge (M)	eptual Knowle	age (C) Procedu	ral Knowledge (P) Metacognitive

Module	Unit	Content	Hrs	Mark
			(48+12)	
Ι		ORGANOMETALLIC COMPOUNDS	10	21
	1	Organometallic compounds. Classification and nomenclature.	1	
	2	Zeise's salt, The 16 and 18 electron rules. Electron counting- covalent and ionic models	1	
	3	Main group organometallics-alkyl and aryl groups 1, 2, 12, 13, 14 and 15, Synthesis, Structure and Applications.	2	
	4	Transition metal to carbon multiple bond-the metal carbenes and carbynes.	2	
	5	Transition metal complexes with chain π ligands–synthesis, structure, bonding and reactions of complexes of ethylene, allyl, butadiene and acetylene.	4	
II		METAL CARBONYLS	15	31

V		ORGANOMETALLIC POLYMERS (Open ended)	12	
	22	Storage and transport of metal ions- ferritin, transferrin and siderophores. Toxic effect of metals	2	
	21	Chlorophyll, Photosynthesis, Photosystem I and II. Nitrogen fixation - Nitrogenases.	3	
	20	Lewis acid role of Zn (II), Structure and functions of Carboxypeptidase and Carbonic anhydrase	2	
	19	Copper enzymes: Oxidase, superoxide dismutase and tyrosinase.	2	
	18	Metallo enzymes, Iron enzymes: Structure and functions of Cytochrome P-450, catalase and peroxidase	3	
IV	BI	DINORGANIC COMPOUNDS AND THEIR FUNCTIONS	12	24
	17	Hydroformylation of alkenes, Monsanto acetic acid process and Wacker process. Metal complexes in enantioselective synthesis	2	
	16	Homogeneous catalysis. Hydrogenation, Isomerization of alkenes, alkyne, Cycloadditions, Ziegler-Natta catalysis	3	
	15	Hydrozirconation of alkenes and alkynes	1	
	14	Catalytic steps, Oxidative addition, Reductive elimination and Insertion reactions.	2	
	13	Complex formation and activation of H ₂ , N ₂ , O ₂ , NO by transition metals	3	
II		PLICATIONS OF ORGANOMETALLIC COMPOUNDS IN GANIC SYNTHESIS AND HOMOGENEOUS CATALYSIS	11	22
	12	Oxidative decarbonylation. Photochemical substitution. Microwave assisted substitution.	3	
	11	Collmann's reagent, Migratory insertion of carbonyls	2	
	10	Disproportion, Nucleophilic addition, electrophilic addition to the carbonyl oxygen, Carbonyl cation, anions and hydrides	3	
	9	Reactions of Metal carbonyls-Activation of metal carbonyls,	2	
	8	Synthesis of Metal carbonyls, Direct and reductive Carbonylation	3	
	7	IR spectroscopy as a tool to study bonding and structure of metal carbonyls.	1	
	6	Metal carbonyls- Bonding modes of CO.	1	

The following topics related with organometallic polymers can be selected by the teacher	
1.Polymers with organometallic moieties as pendant groups. Polymers with organometallic moieties in the main chain	
2. Condensation polymers based on ferrocene, rigid rod polyynes, Poly (ferrocenyl silane)s and their application	
3. Polygermanes and Polystannanes	
4. Polymers prepared by ring opening polymerisation	
5. Organometallic dendrimers	

REFERENCES

1. B. D. Gupta, A.J. Elias, Basic Organometallic Chemistry - Concepts,

Synthesis and Applications, Second edition, University Press, 2013.

2. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals,

Fourth edn. 2005, Wiley Interscience.

3. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry. 5th edition, John and Wiley, 1999.

4. R.S. Drago. Physical Methods in Inorganic Chemistry, 2nd edition, affiliated east west press, 1993.

5. P. Powell, Principles of Organometallic Chemistry, 2nd edition, Chapman and Hall, London, 1998.

6. S. F. A. Kettle, Concise coordination chemistry, Nelson, 1969.

 S. F. A. Kettle, Physical Inorganic Chemistry-A Coordination chemistry Approach, Spectrum academy publishers, 1996.

8. Purcell and Kotz, Inorganic Chemistry. 10. D. J. Shriver, P. W. Atkins, Inorganic Chemistry, 5th edition, Oxford university press, 2010.

9. J.E. Huheey, E.A. Keiter, R.L. Keiter. O.K. Medhi, Inorganic Chemistry,

principles of structure and reactivity, Pearson Education, 2006.

10. James E House, Inorganic Chemistry, Academic Press, 2008.

11. B. Douglas, D. McDaniel, J. Alexander, Concepts and Models of Inorganic

Chemistry, Wiley Student Edition, 2006.

12. R.C. Mehrothra and A. Singh, Organometallic Chemistry, A Unified

Approach, Wiley Eastern.

13. Piet W.N. M.van Leeuwen, Homogeneous Catalysis, Springer, 2010.S.J.

Lippard and J.M.Berg, Principles of Bioinorganic Chemistry, University

ScienceBooks.

14. I. Bertini, H.B. Grey, S.J. Lippard and J.S.Valentine, Bioinorganic

Chemistry, Viva Books Pvt. Ltd., 1998.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2				2	1	2				1		1
CO 2							2				1		2
CO 3				1	1	2					1	1	2
CO 4	2				2	1	3				2	1	1
CO 5	2					1	2				2	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

	Internal Exam	Assignment/ Seminar/ vivavoce	Practical skill evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry								
Course Title	ORGANIC CHEMISTRY VI								
Type of Course	Major/Minor								
Semester	VIII								
Academic	400 - 499	400 - 499							
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Preliminary ideas abo	out common	rearrangemer	nt reactions, po	ericyclic				
	reactions and gives an	n insight to v	arious spectre	oscopic techni	iques.				
Course	This course explore	es common	rearrangem	ent reactions	, pericyclic				
Summary	reactions and gives an	n insight to v	arious spectro	oscopic techni	iques.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Understand and apply various rearrangement reactions to electron deficient Carbon, Nitrogen and Oxygen	U	С	Test /Seminar
CO2	Comprehend and utilize pericyclic reactions, specifically electrocyclic, cycloaddition and sigmatropic rearrangement reactions	U	р	Dicussion/ Assignment
CO3	Able to explain the principles of UV-Visible- Spectroscopy, IR spectroscopy, interpret their spectra and use Mass spectrometry in molecular mass determination	An	Р	Quizes/Test

CO4	Understand and analyze both H NMR and C NMR spectra of simple organic molecules for structure elucidation of organic compounds	Ар	Р	Discussion/Seminar /Assignment
CO5	Perform various chemistry practicals including preparation, estimation techniques, column chromatography and identification of unknown molecule via spectroscopic analysis	An	Р	Viva Voce/Observation of practical skill
# - Fa	emember (R), Understand (U), A ctual Knowledge(F) Conceptua cognitive Knowledge (M)		-	

Module	Unit	Content	Hrs	Marks
Ι		Common rearrangement reactions	8	18
	1	Rearrangement to electron deficient Carbon-Wagner - Meerwin rearrangement, Pinacol-Pinacolone rearrangement, Tiffeneau- Demjanov, Dienol-Phenol.	2	
	2	Rearrangement to electron-deficient Nitrogen - Beckmann, Lossen, Hofmann, Curtius.	2	
	3	Rearrangement to electron-deficient Oxygen - Baeyer-Villiger, Dakin reaction.	2	
	4	Acyl carbene rearrangements - Wolff, Arndt-Eistert synthesis.	1	
	5	Anionic rearrangements - Favorskii and Benzilic acid rearrangements.	1	
II		11	24	
	6	Electrocyclic reaction – ring-opening reaction and ring closure reactions in butadiene and hexatriene, con rotation and disrotation of HOMO and LUMO of butadiene and hexatriene for product formation.	2	
	7	Cycloaddition reactions - 2+2 and 4+2 cycloadditions – antarafacial and suprafacial additions, Examples for thermal and photochemical cyclo addition reactions.	2	
	8	Diels alder reaction - dienes and dienophiles in Diels alder reaction, distereoslectivity, hetero Diels-Alder reaction.	2	
	9	Dipolar cycloaddition - Huisgen cycloaddition, Click chemistry (azide-alkyne cycloaddition as example).	1	

	10	Sigmatropic rearrangement - Sigmatropic rearrangements: 1,3 and 1,5 and 1,7 shifts of hydrogen atoms (explanation based on frontier molecular orbitals).	2	
	11	Cope rearrangement and Claisen rearrangement, 2,3-rearrangement, chelotropic reaction, FMO and Moebius-Hückel Approach.	2	
III		UV-Visible-spectroscopy and Mass spectrometry	13	28
	12	UV-Visible-spectroscopy- basic principles, Factors affecting redshift and blueshift, λ max calculation for dienes and α , β -unsaturated carbonyl compounds and polyenes.	3	
	13	IR spectroscopy- basic principles, Factors affecting absorption frequencies, Fingerprint and functional group region.	2	
	14	IR spectra of functional groups-alkenes, Alkynes, Aromatic compounds, Alcohols, Phenols, Carbonyl, Carboxylic acid derivatives, nitro, cyano, sulfoxide.	2	
	15	Mass spectrometry- Theory, Molecular ion peak, Fragment ions, Molecular mass determination, Metastable ion.	3	
	16	Isotopic effect, N Rule, Index of hydrogen deficiency, McLafferty rearrangement, Ionization methods.	3	
IV		13	28	
	17	NMR Spectroscopy - Basic principles, Chemical shift values in low resolution spectra	3	
	18	High resolution H NMR spectra: Spin-spin splitting, Pascals triangle for Splitting patterns and calculation of coupling constant, Factors affecting coupling constant	3	
	19	Interpretation of 1H NMR and C NMR spectra of simple organic molecules	3	
	20	Structure elucidation of simple organic compounds using UV, IR and 1H NMR spectroscopic techniques.	4	
V		Practicals	30	
	1.	Introduction to organic lab	4	
	2	 Estimation of aniline/phenol Estimation of glucose organic compounds by colorimetry Estimation of drug molecules by titration/colorimetry Double stage preparations (Synthesis of dihydroxy triptycene from anthracene and hydroquinone, reductive amination and its structure analysis) - any one Cannizzaro reaction of p-chlorobenzaldehyde and isolation of products 	20	

	 6. Column chromatography 7. Identification of unknown molecule via spectroscopic analysis (measure the spectra and analyse if the instruments are accessible, otherwise analyse the provided the spectra) 		
3	Open ended	6	

References

- 1. Organic Chemistry, by Jonathan Clayden, Nick Greeves, Stuart Warren, Oxford University Press
- 2. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Wiley
- 3. Organic Chemistry Paperback, Francis Carey, McGraw-Hill Education
- 4. Advanced Organic Chemistry, David E. Lewis, Oxford Univ Pr; Illustrated edition
- 5. Principles of Organic Synthesis, R. O. C. Norman & J. M. Coxon, 3rd Ed., CRC press, 2000.
- 6. Organic Mechanisms- Reactions, Stereochemistry and Synthesis, R. Bruckner, Springer 2007.
- 7. The Art of Writing Reasonable Reaction Mechanisms, R. B. Grossman, 3rd Ed., Springer, 2019.
- 8. Name reactions J J Li, Springer.
- 9. Spectrometric Identification of Organic Compounds, 8ed Paperback 1 March 2022
- 10. Robert M. Silverstein, Francis X. Webster, David J. Kiemle, Wiley.
- 11. Introduction to Spectroscopy, D. L. Pavia, 5th Ed., Cengage, 2015.
- 12. Organic spectroscopy, William Kemp.MACMILLAN; SECOND edition
- 13. Spectroscopy of Organic compounds, P S Kalsi. New Age International Private Limited
- 14. Volgel's practical organic chemistry. Pearson India
- 15. Quinone Synthesis and a Visual Introduction to Column Chromatography: An Undergraduate Experiment, Danielle L. Pearson and Russell R. A. Kitson, J. Chem. Educ. 2022, 99, 3731–3734, https://doi.org/10.1021/acs.jchemed.1c00940

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	-	-	3		2	1	3		2
CO 2	2		-	-	-	-	3		2	1	3		2
CO 3	-	-		-	2	2	3		2	2	3		3
CO 4	-	-			3	3	3		2	2	3		3

CO 5	-		3	-	3	3	3		3	2	3		3
---------	---	--	---	---	---	---	---	--	---	---	---	--	---

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent/viva/s eminar	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry					
Course Title	PHYSICAL CHEMISTRY V- ADVANCED TOPICS IN SOLID					
	STATE AND ELECTROCHEMISTRY					
Type of Course	MAJOR /MINOR					
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	4	-	-	60	
Pre-requisites	properti Adsorpt It is des and theo CHHE4 CHE7C		c electrochemi s catalysis s to familiarise urses, CHE2C, , CHE6CJ306,	istry, Solid surf e with the prev J102, CHE3CJ CHE7CJ401,	faces: ious physical 201, and	
Course Summary	Physical properties of solids are intriguing and they are of huge technological interest. In fact, our everyday life in the modern times is intimately connected to these exciting solid materials. First two modules of this course are designed to appreciate the science of structure-property relations in solids. The third module deals with the kinetics of electrochemical processes and basic idea of some electroanalytical methods. The fourth module gives a deeper insight to the importance of surface of solids in heterogeneous catalysis.					

Course Outcomes (CO): .

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the importance of structure and bonding in solids	U	C	Test /Seminar/Assignment
CO2	To analyse and correlate the structure with various physical properties in solids	Ар	Р	Test /Seminar/Assignment
CO3	To comprehend the concepts of equilibrium electrochemistry	U	F	Test /Seminar/Assignment

CO4	To apply the knowledge of electrode kinetics in electrochemical processes and electroanalytical techniques	Ар	Р	Test /Seminar/Assignment
CO5	To understand theory of multilayer adsorption of molecules on solid surfaces	U	С	Test /Seminar/Assignment
CO6	To apply the knowledge of adsorption for the development of heterogeneous catalysts	Ар	Р	Test/Labwork/Viva
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)				

Module	Unit	Content	Hrs	Marks
Ι		STRUCTURE AND BONDING IN SOLIDS	12	26
	1	Ionic bonding, radius ratio rules and structure of simple	2	
		Ionic solids (NaCl, KCl, CsCl, ZnS, NiAs, CaF ₂ etc.),		
		Partial covalent bonding in solids,		
		Perovskite and Spinel-type structures		
	2	Qualitative MO diagram of hypothetical cyclic molecules	2	
		of Hydrogen- H ₂ , H ₄ , H ₅ , H ₆ , H _n . Orbital interactions		
		in solids and Band theory as applied to hypothetical one		
		dimensional H-atom crystal, Brillouin zone, Band		
		dispersion curves, Density of States (DOS), The Fermi		
		level		
	3	Band width and nature of band dispersion and DOS in 1D	2	
		H-atom crystal with varying H-H distances, Peirls		
		distortion, Crystal orbital overlap population,		
	4	Band dispersion curves of 1D- chain of <i>p</i> - and <i>d</i> orbitals	2	
		(1D-chain of eclipsed PtL ₄ complexes), Band theory		
		extended to two dimensions- 1s orbitals, sigma and pi-		
		interactions of 2p orbitals		
	5	Band structure of 3D solids: Qualitative idea of band gap,,	2	
		direct and indirect band gaps, metals, insulators and		
		semiconductors, Ohm's law, definition of resistivity and		
		conductivity of solids, Topological Insulators (basic idea		
		only)		
	6	Bandwidth and its slope, electrical conductivity in solids	2	
		and charge carriers, electrons and holes, mobility of		
		charge carriers, charge carrier concentration, effective		
		mass, concept of polarons, Structure-property relation in		
II		solids	12	26
11	7	PHYSICAL PROPERTIES OF SOLIDS	12 3	26
	7	Semiconductors: p- and n-type doping, transistors-	3	
		Photovoltaic effect and Solar energy conversion		

		motoriala Examples C: CIC 1		
		materials, Examples: Si, CuInSe ₂ , and		
		Methylammonium lead bromide, Solar cells		
		Thermoelectric materials for heat to electricity direct		
		conversion, Seebeck and Peltier effects, Examples:		
		Bi ₂ Te ₃ , PbTe	_	
	8	Dielectrics, Ferroelectrics, Ferroelectricity in BaTiO ₃ ,	2	
		Piezoelectrics, Piezoelectricity in (Pb,Zr)TiO3,		
		Transducers		
	9	Optical properties of solids: Luminescence and	2	
		phosphors, Lasers- Ruby Laser, Semiconducting lasers,		
		Light emitting diodes (LED)		
	10	Magnetic materials: Theory and examples of	2	
		Ferromagnetic, Antiferromagnetic, and Ferrimagnetic		
		materials, Classification of Hard and Soft magnets with		
		examples, their crystal structures and their uses, Ferrites,		
		Nd ₂ Fe ₁₄ B, SmCo ₅ , Multiferroics and examples		
	11	Superconductivity, BCS theory, Critical temperature and	3	1
		critical field, Type-1 and Type-2 superconductors,	C	
		Meissner effect, Oxide-based superconductors.		
III		DYNAMIC ELECTROCHEMISTRY	18	30
111	12	The nature of electrolytes, Ion activity, Ion-ion and ion-	2	50
	12		4	
		solvent interaction, The electrical potential in the vicinity		
		of an ion- Ionic thickness.		
	13	The Debye-Hückel equation (derivation), Limiting and	3	
		extended forms of the Debye- Hückel equation,		
		Applications of the Debye-Hückel equation to calculate the		
		effect of ionic strength on ion reaction rates in solution -		
		Primary and secondary salt effect		
	14	Electrical double layer: Helmholtz -Perrin theory, Gouy	2	
		Chapman Model and Stern theory. Electrokinetic		
		phenomena – zeta potential		
	15	Electro de himstico, of electro de any construction (1)	2	
	15	Electrode kinetics of electrode processes, Overpotential,	3	
		the Butler-Volmer equation-The relationship between		
		current density and overvoltage, the Tafel equation.		
	16	Polarization: electrolytic polarization, dissolution and	2	
		deposition potentials, concentration polarization		
	17	Determination of hydrogen overvoltage and oxygen	2	
		overvoltage. Metal deposition over voltage, Principles of		
		Polarography- the half-wave potential		
	18	Basic idea of Electrocatalysis, Application of	2	
	10	J / 11	4	
		electrocatalysis in Hydrogen Evolution Reactions (HER)		
	19	Basic principles of Galvanostatic and Potentiostatic	2	
		methods in electrochemistry: Chronoamperometry,		
				•

	Coulometry, Cyclic voltammetry, Chronopotentiometry, Impedance spectroscopy		
IV	SOLID SURFACES: ADSORPTION AND HETEROGENEOUS CATALYSIS	6	16
	20 Adsorption at solid surfaces: Adsorption isotherms, BET equation – derivation, Determination of surface area and pore structure of adsorbents- physical adsorption methods, X-ray methods, mercury intrusion method, chemisorption methods,	2	
	21 Features of heterogeneous catalysis: Langmuir - Hinshelwood mechanism and Eley-Rideal mechanism – illustration using the reaction 2CO + O ₂ > 2CO ₂	2	
	22 Basic idea of experimental methods to determine surface composition of catalysts: X-ray and UV photoelectron spectroscopy (XPS, UPS), Electron energy loss spectroscopy (EELS), Surface extended X-ray absorption fine structure spectroscopy (SEXAFS)	2	
V	Open ended	12	
	 Computer simulations of crystal structures of various structure types from available cif files, Simulation of reciprocal lattice using suitable computer programs Demonstration of band dispersion curves of simple systems such as graphene, band structure calculation of Si by using Quantum Espresso or other software packages. Explanation of electrical conductivity measurements of semiconductors via four-point probe method, Magnetic hysteresis in soft and hard magnets, Optical band gap by using diffuse reflectance spectroscopy (Virtual lab) demonstration of Cyclic voltammetry and impedance spectroscopy Adsorption experiments on activated charcoal and other solid surfaces 		
	References		
	 Modules I and II 1. Solid State Chemistry and Applications by A. R. West, 2nd edition, 2014, Wiley 2. How Chemistry and Physics Meet in the Solid State, Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26 (1987) 846-878 Module III 3. Electrochemical methods: Fundamentals and Applications, by Allen J. Bard and Larry R. Faulkner, 2nd 		

5. Modu	Volume 2a, Modern Electrochemistry, 2 nd edition, Fundamentals of Electrodics by John O'M Bockris, Amulya K. N. Reddy, and Maria Gamboa-Aldeco, Volume 1, Modern Electrochemistry, 2 nd edition, Ionics by John O'M Bockris, and Amulya K. N. Reddy le IV Physical Chemistry: Thermodynamics, Structure and Change, 10th Edition, P. Atkins and J. de Paula, (W. H Freeman and Company, New York)	
7.	K. Laidler, Chemical Kinetics, 3rd Ed., Pearson Education, New Delhi, 2004.	
Furth	er reading	
8. 9.	 C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry, 2nd Ed., Cambridge University Press, 2004. Introduction to Surface Physical Chemistry, K. Christmann, Springer-Verlag, Berlin, 1991 Direct Energy Conversion, Andrea M. Mitofsky, 2018 	

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO 4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	-	-	3	2	3	2	2	-	2	-	1
CO 2	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 3	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 4	3	2	-	-	3	3	3	2	1	-	1	-	1
CO 5	3	2	-	1	3	3	3	2	1	-	3	-	1
CO 6	3	-	2	3	3	3	3	2	1	2	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment /viva	Practical skill evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark			\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark

BSc CHEMISTRY

Programme	B. Sc. Chemistry	B. Sc. Chemistry							
Course Title	RESEARCH METH	RESEARCH METHODOLOGY IN CHEMISTRY							
Type of Course	MAJOR								
Semester	VIII								
Academic	400 - 499								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites	1. A strong gras	p of foundati	onal chemist	ry principles a	nd				
	terminology.								
	2. Understanding	g of basic res	earch concep	ots.					
Course	This course provides	a comprehen	sive overviev	v of research n	nethodology				
Summary	in chemistry, covering	g the processe	es involved in	o conducting re	esearch, data				
	analysis techniques,	the role of	of computers	in chemistr	ry research,				
	analytical techniques,	scientific wi	iting, and res	earch ethics. S	Students will				
	develop essential ski	lls and knov	vledge to con	nduct research	n effectively				
	and ethically in the fi	eld of chemi	stry.		-				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the sequential processes involved in research, from topic formation to publication, encompassing hypothesis development, data collection, analysis, hypothesis revision, and effective communication of findings.	U	F	Instructor created exams / Quiz /Assignment
CO2	Develop proficiency in analyzing chemical data, including error classification, measurement accuracy, precision assessment, and statistical analysis application.	An	С	Class test /Assignment /Quiz
CO3	Acquire competency in utilizing computers for chemistry research, covering hardware, software, programming languages, operating	U	Р	Assignment/ Class test

	systems, and specific applications like MS Office and scientific software.					
CO4	Apply various analytical techniques, such as chromatography, spectroscopy, electroanalysis, and thermal analysis, effectively in chemical research.	Ap	С	Assignments /Seminar presentation		
CO5	Gain proficiency in scientific writing, including report structuring, language usage, and citation styles, while adhering to ethical standards like plagiarism avoidance and responsible data handling.	U	М	Assignments /Seminar presentation		
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Detailed Syllabus:

Module	Unit	Unit Content					
Ι		Introduction to Research Methodology					
	1	Formation of the Topic	1				
	2	Hypothesis: Conceptual Definitions, Operational Definition	2				
	3	Gathering of Data, Analysis of Data, Revising of Hypothesis, Conclusion	3				
	4	Literature Survey: Journals, Books, and E-resources	3				
	5	Presentation and Publication of Research Output	3				
II		Data Analysis and Interpretation	12	24			
	6	Errors in Chemical Analysis: Classification of Errors, Accuracy, Precision, and Reproducibility of Measurement	3				
	7	Methods of Analysis in Chemistry: Instrumental and Non- Instrumental	2				
	8	Presentation of Data: Mean, Standard Deviation	2				
	9	Comparison of Results: "t" Test, "f" Test, Chi-Square Test	2				
	10	Least Squares Analysis, Weighted Least Squares Analysis, Regression Coefficient, Rejection of Results	3				
III		Applications of Computers in Chemistry	12	24			

	1 44						
	11	Types of Computers: Mainframe, Mini, Micro, Supercomputers, Personal Computers	2				
	12	Computer Hardware: CPU, Input and Output Devices, Memory, Peripheral Devices, Auxiliary Storage Devices	2				
	13	Computer Software: System Software, Application Software, Programming Languages: Machine Language, Assembly Language, High-Level Languages, Interpreter and Compiler	3				
	14	Operating Systems: Disk Operating System, Windows, macOS, Linux	2				
	15	Use of Internet in Research: Websites, Search Engines, e Journals, e-Libraries, INFLIBNET	1	-			
	16	Software Packages and Scientific Applications in Chemistry: Origin, Chemsketch, Chemdraw	2	-			
IV	Analytical Techniques for Chemical Research						
	17	Chromatography: Thin layer chromatography, Column chromatography, Paper chromatography	2	-			
	18	Gas liquid chromatography, High pressure liquid chromatography (HPLC)	3				
	19	Spectroscopic methods: UV-Visible, IR,	1	-			
	20	NMR, Mass and ESR	2	-			
	21	Electroanalytic methods: Polarography, Coulometry, Cyclic voltammetry	2				
	22	Thermal analysis: thermogravimetry (TG)- differential thermal analysis (DTA) and differential scanning calorimetry (DSC)	2	-			
V		Scientific Writing and Ethics of Research	12				
	Open Ended	Significance of Report Writing, steps in Writing Report: Introduction, review of literature, scope, Materials and methods, Results and discussion, conclusions, Bibliography, Citation, Acknowledgements, Layout, Structure, and Language of typical reports, use of Illustrations, and tables, Overview of popular citation styles: APA, MLA, ASA, Chicago Manual of Style, Oral presentation: Planning, Preparation, Practice, Making presentation, Use of visual aids, Importance of effective communication. Environmental Impacts, Ethical Issues, Commercialization, Copyright, Intellectual Property Rights, Reproduction of Published Material, Plagiarism, Citation and Acknowledgement, Reproducibility, Accountability					

References:

1. Leedy, Paul D., Jeanne E. Ormrod, and Jeanne Ellis Ormrod. Practical Research: Planning and Design. Prentice Hall, 2004.

2. Graziano, Anthony M., and Michael L. Rau. Research Methods: A Process of Inquiry. Prentice Hall, 2006.

3. Smith, Robert V. Graduate Research: A Guide for Students in the Sciences. University of Washington Press, 1998.

4. Skoog, D. A., and M. West. Principles of Instrumental Analysis. Saunders Golden Sunburst Series.

5. Vogel, A. I. A Textbook of Quantitative Inorganic Analysis. ELBS Longman's Green and Co Ltd., London, 1962.

6. Jurs, Peter C. Computer Software Applications in Chemistry. 2nd ed., John Wiley & Sons, New York, 1996.

7. Madric, and Donevan. Understanding Computers. McGraw Hill.

8. Raman, KV. Computers in Chemistry. Tata McGraw Hill, 1993.

9. Wendlandt, WW. Thermal Methods of Analysis. Interscience, New York, 1964.

10. RA, DA. How to Write and Publish a Scientific Paper. Cambridge University Press, London, 1992.

11. Chandra, A., and T.P. Sexena. Style Manual. Metropolitan Book Company Ltd., New Delhi, 2000.

12. Bouchoux, D. E. Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PS O5	PS O6	PO1	PO2	PO3	PO4	PO5	Р О 6	Р О 7
CO 1	2	1		2	2	2	2	2	1	1	2	2	2
CO 2	2	2		2	2	2	3	2	2	2	2	2	2
CO 3	2	2		2	2	2	2	2	2	3	2	1	2
CO 4	2	2	2	2	3	2	3	1	1	1	2	1	2
CO 5	2	1		2	2	2	3	2	3	2	2	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
 Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment/viva /seminar/Quiz	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark \checkmark		\checkmark
CO 2	\checkmark	$\sqrt{}$		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		$\sqrt{}$		\checkmark
CO 5		$\sqrt{}$		\checkmark

ELECTIVE COURSES IN MAJOR

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	GREEN CHEMISTRY							
Type of Course	ELECTIVE IN MA	JOR						
Semester	V							
Academic	300-399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	4	-	-	60			
Pre-requisites	1. Proficiency in			terminology.				
	2. Familiarity wi	ith environm	ental issues.					
	3. Understanding	g of synthetic	c organic che	mistry princip	oles and			
	methods.							
Course	The course provide	s a compre	hensive ove	rview of the	fundamental			
Summary	principles, techniques, and applications of Green Chemistry, empowering							
	students with the knowledge and skills to address environmental challenges							
	through the adoption	of sustainabl	e chemical p	ractices				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding of fundamental principles of green chemistry and their socio-environmental significance.	U	F	Instructor- created exams / Quiz /Assignment
CO2	Ability to employ alternative starting materials and green reagents in chemical processes, emphasizing sustainability.	Ар	С	Class test /Assignment /Quiz
CO3	Understand and apply knowledge about green solvents and catalysts in the context of sustainable chemical practices.	U	Р	Assignment/ Class test

CO4	Apprehend the role of Green Energy and techniques such as microwave and ultrasound assisted reactions in environment-friendly chemical reactions.	An	Р	Assignments /Seminar presentation			
CO5	Evaluate the practical applications and limitations of green chemistry, and its influence on the world.	E	Р	Assignments /Seminar presentation			
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus:

Module	Unit	Hrs	Marks		
Ι		12	20		
	1	Green Chemistry - Some important environmental laws (The water (prevention and control of pollution) act, 1974, The environmental protection act of 1986, The air (prevention and control of pollution) act 1981) pollution prevention Act of 1990.	2		
	2	Emergence of green chemistry	1		
	3 Need for Green Chemistry (Prevention and minimization of hazardous products, Reduction of chemical waste and byproducts).				
	4	Goals of Green Chemistry. Anastas' twelve principles of green chemistry	2		
	5	Detailed explanation of each postulate with suitable examples	5		
II	Al	ternative starting materials and reagents in green chemistry	12	20	
	6	Use of renewable starting materials: Illustrate with examples such as biodiesel, bioethanol	3		
	7 Polymers from renewable resources.		2	-	
	8 Green synthesis using Dimethyl carbonate		2		
	9	3			
	10	Photochemical synthesis of vitamin D, Advantages compared to conventional synthesis	2		

III		12	20		
	11	Ionic liquid -Definition and design.	2		
	12Use of ethyl ammonium nitrate, Ethyl-3-methylimidazolium (EMIM) Chloride and EMIM dicyanamide				
	13	Green synthesis using water as solvent	1	-	
	14	Green synthesis using supercritical carbon dioxide as solvents	1		
	15	Solid state synthesis	2		
		Comparison of green solvents and conventional organic solvents. Green catalysis	2	-	
	17	Biocatalysis and photocatalysis.	2		
IV		12	20		
	18	Mechanism of microwave assisted reaction	2		
		Microwave assisted solvent free synthesis of copper phthalocyanine	1	-	
		Microwave assisted reactions in water (Hofmann Elimination, methyl benzoate to benzoic acid and Decarboxylation reaction).	4	-	
		Mechanism of ultrasound assisted reactions, sonochemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine)	3	-	
		Comparison of green and conventional method for one important molecule (oxidation of toluene to benzoic acid by microwave assisted method)	2		
V		Open Ended	12	20	
		Click chemistry, waste management, renewable energy, can suggest experiments, awareness about presidential green chemistry awards, Limitations of green chemistry.	12		

References:

- 1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry, Anamalaya Publishers, 2005
- 2. Anastas, P.T, Warner, J.K. Oxford Green Chemistry -Theory and Practical, University Press, 1998
- 3. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
- 4. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry, American Chemical Society, Washington, 2000
- 5. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry, American Chemical Society, Washington, 2002

- Lancaster, Mike, Green Chemistry an Introductory Text 2nd Ed., RSC Publishing,. ISBN: 9781-84755-873-2
- 7. Anastas, P.T and Warner, J.C. Green Chemistry: Theory and Practice, Oxford University Press, 1998
- 8. Kirchoff, M. and Ryan, M.A. Greener approaches to undergraduate chemistry experiment. American Chemical Society, Washington DC, 2002
- 9. Ryan, M.A. Introduction to Green Chemistry, Tinnesand; (Ed), American Chemical Society, Washington DC, 2002.

	PSO 1	PSO 2	PSO 3	PSO 4	PS O5	PS O6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1						3		1		1	3	
CO 2	1						3		1		3	2	2
CO 3						3	3		1		1	3	
CO 4						3	3		1		3	3	2
CO 5			3				3		1		1	3	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	NANOSCIENCE A	NANOSCIENCE AND NANOTECHNOLOGY						
Type of	ELECTIVE IN MA	JOR						
Course								
Semester	V							
Academic	300-399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	4	-	-	60			
Pre-requisites	1. A strong gras	o of foundati	onal chemist	ry principles a	and terminology.			
	2. Understanding	g of key phys	sics concepts	relevant to m	aterials science.			
Course	This course offers a	comprehen	sive introduc	ction to the i	nterdisciplinary field of			
Summary	nanoscience, coverin	g the fundation	amental prin	ciples, synthe	esis methods, structural			
	properties, and diverse applications of nanomaterials. Through a blend of theoretical							
	lectures and practica	l demonstra	tions, studer	nts will gain	insight into the unique			
	properties and potenti	al applicatio	ns of materia	ls at the nano	scale.			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the history, scope, definitions, and fundamentals of nanoscience and nanotechnology, including the study of nanomaterials	U	F	Instructor- created exams / Quiz /Assignment
CO2	Apply various methodologies for nanoparticle synthesis and characterization, gaining practical understanding and applications	Ар	С	Class test /Assignment /Quiz
CO3	Grasp the structures and properties of diverse nanomaterials, including carbon, organic, and inorganic	U	Р	Assignment/ Class test

	nanomaterials, and understand their applications					
CO4	Examine and apply the principles of photovoltaic energy conversion, targeted drug delivery, and other applications of nanomaterials	An	С	Assignments /Seminar presentation		
CO5	Construct ideas about size and shape-dependent catalysis, interactions between biomolecules and nanoparticle surfaces and applications in biology	Ар	М	Assignments /Seminar presentation		
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks				
Ι	Introdu	iction to Nanoscience	12	20				
	1	History and Scope - Feynman's Vision, Moore's Law, Faraday's experiment and Lycurgus cup.	2					
	2	Definitions of Nanoscience and Nanotechnology. Energetics of nanomaterials – kinetic stability, need for surface modification.	2					
	3	3 Classification of Nanomaterials – 3D, 2D, 1D and 0D, confinement of electrons and phonons, quantum dots.						
	4	Surface to volume ratio, Quantum size effect, Surface Effect.						
	5	Size-dependent variation in physical- chemical- electronics- catalytic properties.	3					
II	Methoo	ls for nanoparticle synthesis and characterization	12	20				
	6	Top-down approach - Ball milling, nanolithography.	1					
	7							
	8	Methods of synthesis - precipitation, sol-gel, hydrothermal, microemulsion, chemical reduction, chemical vapour deposition and self-assembly.	3					

	9	Characterization of nanomaterials by XRD - Theory, factors affecting line broadening, Scherrer equation.	2	
	10	SEM & TEM- Electron wavelength by De-Broglie relation, resolution and resolving power, electron-sample interaction, components, schematic diagram, bright and dark field imaging	2	-
	11	AFM- Introduction to scanning probe methods - components, schematic diagram, tapping and scanning modes of AFM)	2	
III	Structu	ire and Properties of Nanomaterials	12	20
	12	Carbon Nanomaterials and the nature of carbon bonds.	1	-
	13	Fullerenes - structure of C60, laser ablation synthesis, doping and superconductivity in M3C60.	2	
	14	CNT- chiral, zig-zag and armchair CNT, arc discharge synthesis, electrical and mechanical properties	2	
	15	Graphene- Dependence of edge geometry on electrical, magnetic and optical properties. Oxidative exfoliation synthesis, properties and uses.	2	
	16	Organic nanomaterials – Structure and applications of dendrimers and liposomes. Inorganic nanomaterials	2	
	17	Electrical and optical properties (Eg: TiO ₂ , CdS) Nanomagnetism – Superparamagnetism (Eg: Fe ₃ O ₄). Nanocomposites and their advantages	3	
IV	Applica	ations of nanomaterial	12	20
	18	Principle of photovoltaic energy conversion, TiO ₂ based DSSC- Components and mechanism.	3	
	19	Targeted Drug Delivery using magnetic nanoparticles - functionalization using drug molecules, dispersibility, drug release.	3	
	20	Photodegradation of dyes using TiO ₂ - mechanism	2	
	21	Carbon nanomaterials as adsorbents for remediation and hydrogen storage.	2	
	22	Surface Plasmon Resonance (Eg: Ag or Au nanoparticles) and its application	2	
V	Nanoca	ntalysis and Nanobiology (Open Ended)	12	20
	Open Ended	Size and shape dependent catalysis by nanomaterials, Interaction Between Biomolecules and Nanoparticle Surfaces, Applications of Nanomaterials in Biology.	12	

References:

- 1. Poole, C. P., & Owens, F. J. Introduction to nanotechnology. Wiley-Interscience
- Vollath, D. Nanomaterials: An Introduction to Synthesis, Properties and Applications. John Wiley & Sons.
- 3. Pradeep, T. Textbook of nanoscience and nanotechnology. McGraw-Hill Education.
- 4. Rao, C. N. R., Müller, A., & Cheetham, A. K. (Eds.). *Nanomaterials chemistry: recent developments and new directions*. Wiley-VCH Verlag GmbH
- 5. Murty, B., Shankar, P., Raj, B., Rath, B. B., & Murday, J. S. *Textbook of Nanoscience and Nanotechnology*. Springer
- 6. Kamat, P. V., Murakoshi, K., Wada, Y., & Yanagida, S. Semiconductor nanoparticles. In Handbook of Nanostructured Materials and Nanotechnology (pp. 291-344). Academic Press.
- 7. Pathak, Y. V. (Ed.). Surface modification of nanoparticles for targeted drug delivery. Cham, Switzerland: Springer
- 8. Thomas, S., Kalarikkal, N., Oluwafemi, O. S., & Wu, J. (Eds.). *Nanomaterials for solar cell applications*. Elsevier.
- 9. Varin, R. A., Czujko, T., & Wronski, Z. S. *Nanomaterials for solid state hydrogen storage*. Springer.

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1					1	3		1		1		
CO 2				1	2	3	3		1		3		2
CO 3						1	3		1				
CO 4				2		1	3		1		3		2

Mapping of COs with PSOs and POs :

CO 5	1 1	3	1	1	3
---------	-----	---	---	---	---

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

BSc CHEMISTRY

Programme	B. Sc. Chemistry								
Course Title	BIO CO-ORDIN	BIO CO-ORDINATION CHEMISTRY							
Type of Course	ELECTIVE IN N	AJOR							
Semester	V								
Academic Level	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
		per week	per week	per week					
	4	4	-	-	60				
Pre-requisites	1. Understand	ding on Chei	nical bonding	g- Coordinatio	on bond				
	2. Interaction	ı of ligands v	with metal ior	is					
	3. Brief idea	on Bio-Inorg	ganic Chemis	try					
Course Summary	The course provid	les Understa	nding on the	classification	, significance,				
	effects of ligand	s in biolog	ical systems	. Analyze th	e interactions				
	between ligands a	and metal io	ons, compreh	end stability	of complexes.				
	Evaluate the func	tions and im	pacts of bulk	metals (Na,	K, Ca, Mg) in				
	biological system	s. Demonstr	rate knowled	lge of trace	and ultratrace				
	metals (Fe, Cu, Zn) roles in bio	logical syster	ns. Evaluate tl	he applications				
	of coordination co	ompounds in	medical ther	apy					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand classification and significance of ligands and summarise ligand effects in biological systems	U	F	Instructor-created exams / Quiz /Assignment
CO2	Analyze ligand interactions with metal ions in biological systems	An	С	Class test /Assignment /Quiz
CO3	Evaluate the functions and impacts of bulk metals (Na, K, Ca, Mg) in biological systems	E	Р	Assignment/ Class test
CO4	Demonstrate knowledge of trace and ultratrace metals (Fe, Cu, Zn) roles in biological systems	An	Р	Assignments /Seminar presentation

CO5	Evaluate the applications of co- ordination compounds in medical therapy	E	Р	Assignments /Seminar presentation
# - Fact	nember (R), Understand (U), Apply (A tual Knowledge(F) Conceptual Knowle edge (M)	-		Create (C)

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks		
Ι		LIGANDS IN BIOLOGICAL SYSTEMS	12	20		
	1	Classification of ligands	1			
	2	Biologically significant ligands- H ₂ O, NH ₃ , Amino acids, peptides, proteins and DNA- RNA bases	4	-		
	3 Chelate effect and Macrocyclic effect					
	4	Significance of Chelate and Macrocyclic and macrobicyclic effects in biological systems.	5			
II]	LIGAND INTERACTIONS IN BIOLOGICAL SYSTEMS	12	20		
	5	Classification of metal ions into bulk, trace and ultra-trace elements	1			
	6	Concept of hard and soft acids and bases	2			
	7	Selectivity of ligands to different metals	2			
	8	Essentials of Crystal-Field splitting	2			
	9	Stability of complexes- thermodynamic and kinetic stability. Stability constant. Factors affecting stability of metal complexes, metal centered and ligand centered properties	4			
	10	Inert and Labile complexes	1	-		
III	F	ROLE OF BULK METALS IN BIOLOGICAL SYSTEMS:	12	20		
		(Na. K, Ca and Mg)				
	11	Ionophores and its classification. Selectivity of ionophores.	1			
	12 Active and passive transport					
	13	Sodium potassium pump-mechanism- enzymes responsible for Na-K pump	2			
	14	Potassium deficiency and K excess effects in biological systems.	1			

	15	Structural role of Calcium in Muscle contraction, bone management and teeth management (qualitative).	3	
	16	Role of Ca in blood clotting, Storage and transfer of Calcium (Brief idea)	2	
	17	Role of Magnesium- structural and functional role in biological systems.	2	
IV		ROLE OF TRACE AND ULTRATRACE METALS IN BIOLOGICAL SYSTEMS (Fe, Cu and Zn)	12	20
	18	Oxygen management Fe proteins (Haemoglobin and myoglobin), Metal management Fe proteins (ferritin and transferrin), electron management Fe proteins (cytochromes and Fe-S proteins)	3	
	19	Oxygen management Cu proteins (Hemocyanin), Metal management Cu proteins (ceruloplasmin), electron management Cu proteins (cytochromes and plastocyanin)	3	
	20	Biological role of Zn- Lewis acids role, structural role, and functional role- Zinc enzymes (carbonic anhydrase)	3	
	21	Biological role of cobalt- Vitamin B12 co-enzymes	1	-
	22	Bioinorganic aspects of Photosynthesis and nitrogen fixation (Brief discussion). Nitrogenase enzyme (qualitative)	2	-
V		APPLICATION OF COORDINATION COMPOUNDS IN MEDICINE AND THERAPY- OPEN ENDED	12	20
	23	Arthritis drugs (Gold based), Diabetic drugs (Vanadium based). Chelation therapy – Use of Dimercapto propanol. Chemotherapy- Cis platin and new generation Pt drugs- Drug resistance and DNA repair mechanism of Pt drugs.	12	

References

- 1. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, Inorganic Chemistry- Principles of structure and reactivity, Pearson education.
- 2. D.E. Fenton, Bi- Coordination Chemistry, Oxford, 1995
- 3. D.F. Shriver and P.W. Atkins, Inorganic Chemistry, Oxford University Press
- 4. Rosette M. Roat- Malone- Bioinorganic Chemistry-A short Course- John Wiley & Sons, INC., Publication.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1						3				2		1
CO 2	2						3				3		2
CO 3	3				1		3						
CO 4					2	1	3				3		3
CO 5						1	3				2		3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

BSc CHEMISTRY

Programme	B. Sc. Chemistry					
Course Title	FOOD CHEMISTR	Y				
Type of Course	ELECTIVE IN MA	JOR				
Semester	V					
Academic	300-399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	1. A brief understan	ding on com	position of va	arious foodstu	ffs	
	2. Chemical changes	s in food dur	ing processin	g and storage		
Course	The Course provides	an understa	anding on str	ructure, classi	fication and	
Summary	properties of food nut	trients. Comp	prehend the c	hemistry of fo	od spoilage,	
	methods of food pres	servation. Ide	entify the rol	le of natural a	and artificial	
	food additives and a	dulterants, t	heir types, a	nd methods of	of detection.	
	Apply techniques to analyze food samples for adulteration and pesticide					
	residues using gas c	hromatograp	hy, liquid c	hromatograph	y and mass	
	spectrometry.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand structure, classification, and properties of food nutrients including carbohydrates, proteins, lipids, vitamins and minerals	U	F	Instructor-created exams / Quiz /Assignment
CO2	Comprehend the chemistry of food spoilage, methods of food preservation, and the concept and impact of food packaging and storage	Ар	С	Class test /Assignment /Quiz
CO3	Identify the role of natural and artificial food additives and	An	Р	Assignment/ Class test

	adulterants, their types, and methods of detection						
CO4	Apply techniques to analyze food samples for adulteration and pesticide residues using gas chromatography, liquid chromatography and mass spectrometry.	Ар	Р	Assignments /Seminar presentation			
CO5	Open ended- Evaluate the impact of modern eating habits on health and wellbeing, classifying fast foods, junk foods, instant foods and condiments, and their health effects	E	Р	Assignments /Seminar presentation			
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus:

Module	Unit	Hrs	Marks	
Ι		Introduction to Food Chemistry- food nutrients	12	20
	1	Carbohydrates: Classification of carbohydrates. Structure and properties of Glucose and Fructose (monosaccharides), Maltose, lactose and sucrose (oligosaccharide) and starch and cellulose (polysaccharide)	3	
	2	Proteins: Introduction to food protein. Structure, classification and physicochemical properties of protein. denaturation, protein determination	3	
	3	Lipids: Classification – Fats and oils – Hydrogenation – Analysis of fats and oils – Acid value, Saponification value and Iodine value.	3	
	4	Minerals: Food minerals, minerals containing Calcium, Iron, Iodine, Sodium and Potassium. Deficiency and toxicity disorders.	2	
	5	Vitamins: Classification, Sources and deficiency diseases.	1	
II		12	20	
	6	Microorganism in food-chemistry of food spoilage: Definition, types of spoilage - physical, enzymatic, chemical and biological spoilage. Mechanism of spoilage.	3	

	7	Methods of food preservation -traditional (drying, smoking, sugaring, freezing, salting, fermentation)	1	
	8	modern methods of food preservation (HPP, PEF, pasteurisation, vacuum packaging, MAP, ohmic heating)	2	
	9	Physical and chemical Additives: – definition, types, Class I and Class II preservatives	2	
	10	Food Packaging and storage - Biodegradable and edible packaging. Environmental concerns, recycling and disposal of packaging waste, Desirable materials for packaging	2	
	11	Shelf life of foods – Definition, intrinsic and extrinsic factors controlling shelf life.	1	
	12	Storage conditions, nutrition value.	1	
III		Food Additives and Adulterants	12	20
	13	Natural and artificial additives for colour and taste- synthetic and natural sweeteners, acidulants, buffering salts, anticaking agents.	4	-
	14	Food adulteration - definition and reasons for food adulteration	3	
	15	Methods of adulteration	2	-
	16	Common Food Adulterants in Chilli Powder, Tea dust, turmeric powder, milk, vegetable oil, coffee powder	3	
IV		Chemical analysis of food	12	20
	17	Detection of adulteration in various foods-Jam, Tea, Coffee Wheat Flour, Butter, Milk powder, Jelly, Cocoa powder	4	
	18	Analysis of pesticides and insecticides in food	1	-
	19	Qualitative Analysis: Gas Chromatography (GC) Liquid Chromatography (LC)	2	
	20	Introduction to HPLC-Separation mechanisms. UV and MS detection	2	-
	21	Chromatogram interpretation	2	
	22	Mass Spectrometry (MS)	1	1
V		Open Ended- Modern Food Habits	12	20
	23	Definition and health effects of fast foods, instant foods, dehydrated foods, junk foods and condiments - Composition and health effects of chocolates and soft drinks. Harmful effects of modern food habits, Healthy cooking methods	12	

References

- 1. Dr. Ling, H D Belitz, Dr. Ing, W. Grosch, Food Chemistry, Springer, Newyork, 1987.
- 2. John M. Deman, Principles of Food Chemistry, Springer International edition, Third edition, 2007.
- 3. Meenakshi Paul, Experimental Food Chemistry, Published gene tech books New Delhi,
- 4. Fenema. R, Food Chemistry, Fourth edition, CRC Press Taylors and Francis groups.
- 5. B. Srilakshmi, Food Science, 5th Edition, New Age Publishers, New Delhi, 2010.
- Robertson GL, Food Packaging Principles and Practice, CRC Press Taylor and Francis Group, 2012
- Gordon L. Robertson (2012), "Food Packaging: Principles and Practice", Third Edition, CRC Press.
- Damodaran, S., Parkin, K L., Fennema, O R., 1996, Fennema's Food chemistry- 4th edition, CRC press Taylor and Francis Group, New York.
- Campbell, M K and Farrell, 2006, S O-Biochemistry 5th edition-international student Edition.
- 10. "Instrumental Methods of Analysis" by Willard, Merritt, Dean, and Settle.
- "Principles of Instrumental Analysis" by Douglas A. Skoog, F. James Holler, and Stanley R. Crouch.
- 12. Pearson, D, 2002, the Chemical Analysis of Foods, Churchill Livingstone, New York.
- 13. O.R. Fennema (2003) Food Chemistry, 3rdEd, Tata McGraw-Hill, New York.
- 14. Meyer, L H-Food Chemistry. CBS publishers & distributors, New Delhi. 2002
- 15. Aurand, L.W. and Woods, A.E. 1973. Food Chemistry. AVI, Westport
- Nielsen, S.S. Introduction to the chemical analysis of foods. Jones and Bartlett Publishers, Boston, London. 2003.
- Plummer D T (1998) An Introduction to Practical Biochemistry, Third edition, Tata McGraw Hill, New Delhi.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1						3		2		1		
CO 2	2				1	2	3		2		1		1
CO 3				1	3	1	3		3		1		
CO 4				2	3	1	3		3		1		1
CO 5				3		3	3		2		1		1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Practi cal Exam	Assignment /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

BSc CHEMISTRY

Programme	B. Sc. Chemistry				
Course Title	POLYMER CHEM	ISTRY			
Type of Course	ELECTIVE IN MA	JOR			
Semester	VI				
Academic	300-399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	1. Basic understa	nding of orgar	nic chemical re	eactions and m	olecular
	structure.				
Course	The course covers pe	olymers com	prehensively	, including cl	lassification,
Summary	polymerization met	hods, prope	erties, proce	essing, and	commercial
	applications. Studen				
	structure, analyzing c	chain and ste	p growth pol	lymerizations.	They apply
	polymer property k	0	-		-
	processing techniqu				,
	calendering, and inj	jection mole	ling. Additio	onally, studer	nts evaluate
	commercial polymers	for industria	l use, gaining	g a thorough ui	nderstanding
	of their importance in	various indu	ustries.		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the classification of polymers based on origin, synthesis, structure, and intermolecular forces.	U	F	Instructor-created exams / Quiz /Assignment
CO2	Analyze chain and step growth polymerizations, discerning mechanisms and factors influencing polymerization processes.	An	С	Class test /Assignment /Quiz
CO3	Apply knowledge of polymer properties such as molecular weights, viscosity, and rheological behaviour to predict and control polymer performance.	Ар	С	Assignment/ Class test

CO4	Understand various polymer processing techniques including bulk, solution, and suspension polymerizations.	U	С	Assignments /Seminar presentation			
CO5	Evaluate the suitability of different commercial polymers for specific industrial applications, utilizing understanding of polymer properties and processing techniques	Ε	С	Assignments /Seminar presentation			
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metao	cognitive Knowledge (M)						

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
Ι	Introduction to Poly	mers Types of Polymerisation	12	20
	1	Polymers and macromolecules – Monomers – Homo and hetero polymers – Copolymers.	1	
	2	Classification based on origin (natural, semi synthetic and synthetic) and synthesis (addition and condensation).	2	
	3	Classification based on structure (linear, branched chain and cross linked) and intermolecular forces (elastomeres, fibres, thermoplastics and thermosetting polymers)	2	
	4	Tacticity in polymers- polymer chain flexibility- factors affecting chain flexibility	2	
	5	Glass transition temperature and crystalline melting points- variation and structures- molecular interpretation of glassy state of polymers	2	
	6	Chain and step growth polymerizations – Free radical, ionic and coordination polymerizations with mechanism – Zeigler-Natta polymerization	3	
II	Properties of Polym		12	20
	7	Molecular weights of polymers: Average molecular weights – Number average and Weight average molecular weights	2	
	8	Sedimentation average (Method of determination not required) and Viscosity average molecular weight – determination of viscosity average molecular weight	3	
	9	Polydispersity index and molecular weight distribution; Molecular weight and Degree of polymerization.	3	
	10	Introduction to polymer melt rheology Newtonian fluids- non-Newtonian fluids. Bingham plastics, pseudo plastics- rheopectic and thixotropic behaviour- rheological measurements	4	

III	Polymerisation Te	chniques and Polymer Processing	12	20
	11	Polymerisation Techniques: Bulk, solution, suspension, emulsion, melt condensation and interfacial polycondensation polymerizations.	2	
	12	Calendering, rotational moulding, compression, injection moulding, blow moulding and thermoforming.	1	
	13	Additives for compounding rubbers- mastication, two roll milling, internal mixing, compounding ingredients, pigments.	2	
	14	Processing aids- processing methods for manufacture of products: blending, calendaring, extrusion and moulding.	3	
	15	Different elastomer curing systems: efficient, semi efficient, conventional and sulphurless cure mechanism of vulcanization, sulphur vulcanizing systems, non- sulphur vulcanizing systems for olefin rubbers	3	
	16	Polymer composites, Properties and its different types- Process of tailoring properties	1	
IV	Polymer Testing an	nd Commercial Polymers (12 hrs)	12	20
	17	Importance of standards and standard organizations- processability and performance- testing of plastics and rubbers material characterization tests such as hardness, tensile stress/strain, compression stress/strain, shear stress/strain, flexural stress/strain, tear tests, rebound resilience, friction, creep, fatigue.	2	
	18	Pollution due to plastics – Recycling of plastics - Plastic identification codes.	2	
	19	Preparation, Structure, properties and applications of: Polyolefins (HDPE, LDPE, PP and PS); Vinyl polymers (PVC, PVP and EVA, Saran); fluoro polymers (Teflon); Acrylic polymers (PAN and PMMA)	2	
	20	Preparation, Structure, properties and applications of: Aromatic polyamides: (kevlar); Polyester (terylene); Polycarbonate (lexan); Polyurethanes; Resins- Glyptal and formaldehyde resins (UF, MF and PF).	2	
	21	Preparation, Structure, properties and applications of: Rubbers (natural rubber, silicone rubber, and polyurethane elastomers, EPDM, BR, SBR, nitrile rubber, Neoprene, Butyl rubber).	2	
	22	Preparation, Structure, properties and applications of: Fibers: (nylon 66 and nylon 6,). Adhesives: (cyanoacrylate, epoxy adhesives, and polyvinyl acetate (PVA) adhesives). Biodegradable Polymers (polylactic acid (PLA) and polyhydroxyalkanoates (PHA)). Conductive Polymers (polyaniline and polyacetylene- concept of doping.	2	
V		lymer Chmeistry (12 hrs)	12	20
	Open Ended	Synthesis of Polyaniline	12	

method	
Problem solving related to molecular weight calculation	

References:

- 1. F. W. Billmeyer Jr., Textbook of Polymer Science, John Wiley and Sons, New Delhi, 2007.
- 2. V. R. Gowarikar, Polymer Chemistry, New Age International Pvt. Ltd., New Delhi, 2010.
- 3. B. K. Sharma, Polymer Chemistry, Goel Publishing House, Meerut, 1989.
- 4. M. G. Arora, M. Singh, M. S. Yadav, Polymer Chemistry, 2nd Revised Edn., Anmolpublications Private Ltd., New Delhi, 1989.
- 5. K. J. Saunders, Organic Polymer Chemistry, 2nd Edn., Chapman and Hall, London, 1988.
- 6. Malcolm P. Stevens, Polymer Chemistry: An Introduction, 3rd Edn., Oxford University Press, USA, 1998.
- 7. Gowri Sankar Misra, Introductory Polymer Chemistry, New Age International, New Delhi, 1993.
- 8. M. S. Bhatnagar, Polymer Chemistry, S Chand and Company Pvt. Ltd., New Delhi, 2014Further reading
- 9. R. B. Seymour, C. E. Carraher, Polymer Chemistry: An Introduction, Marcel Dekker, Inc. New York, 1981.
- 10. G. Odian, Principles of Polymerization, 4th Edn., Wiley, 2004.
- 11. P. Ghosh, Polymer Science & Technology, Tata McGraw-Hill Education, 1991.
- 12. R. W. Lenz, Organic Chemistry of Synthetic High Polymers, Interscience Publishers, New York, 1967.
- 13. M. P. Stevens, Polymer Chemistry: An Introduction, 3rd Edn., Oxford University Press, 2005.

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2						3		2		1		
CO 2	2				1	2	3		3		1		1
CO 3				1	3	1	3		3		1		
CO 4				2	3	1	3		3		1		1

Mapping of COs with PSOs and POs :

CO 5	3	3	3		2		1		1
---------	---	---	---	--	---	--	---	--	---

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Practi cal Exam	Assignment /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	INDUSTRIAL CHEMISTRY							
Type of Course	ELECTIVE IN MA	ELECTIVE IN MAJOR						
Semester	VI							
Academic	300-399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	1. Prior understa	unding of bas	ic chemistry	principles and	l chemical			
	reactions.							
	2. Introductory l	knowledge of	f industrial pr	ocesses and te	erminology.			
Course	The course provides	a comprehen	nsive overvie	w of chemica	al industries,			
Summary	covering industrial	processes,	waste mana	igement, peti	rochemicals,			
	pharmaceuticals, fertilizers, and Kerala's chemical industries. Students							
	learn about water treatment, safety measures, and the production of							
	synthetic petrol, pharmaceuticals, and fertilizers. By examining various							
	industries, students g		0	their operation	ns, preparing			
	them for roles in the	chemical sec	tor.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Comprehend industrial requirements, including water treatment methods, waste management, and safety protocols.	U	F	Instructor- created exams / Quiz /Assignment
CO2	Investigate natural gas, coal, and crude oil composition, as well as the distillation processes involved	An	С	Class test /Assignment /Quiz
CO3	Analyse drug classifications, terminology, and the preparation of common drugs like paracetamol and aspirin.	An	С	Assignment/ Class test

CO4	Evaluate the production methods of nitrogenous, phosphatic, and potash fertilizers, including NPK fertilizers.	E	Р	Assignments /Seminar presentation
CO5	Scrutinize chemical industries in Kerala, focusing on their location, raw materials, and the chemistry involved in product preparation	E	М	Assignments /Seminar presentation
# - Fa	emember (R), Understand (U), Apply (ctual Knowledge(F) Conceptual Know cognitive Knowledge (M)			

Module	Unit	Content	Hrs	Marks
Ι	Introduc	tion (12 hrs)	12	20
	1	Requirements of an industry – location – water – industrial water treatment.	2	
	2	Water softening methods: Clark's process - lime soda process - Ion exchange process)	2	
	3	Safety measures – pilot plants – ISO certification.	2	
	4	Solid waste management -incineration method, Composting process, disposal.	2	
	5	Liquid waste management- Dewatering, sedimentation, Root- Zone Treatment.	2	
	6	Gaseous waste management-absorption, adsorption, combustion.	2	
II	Petroche	mical Industry (12 hrs)	12	20
	7	Introduction. Natural gas – CNG, LNG and LPG. Coal: Classification based on carbon content – carbonisation of coal – composition and uses of various fractions.	2	
	8	Crude Oil: Constitution and distillation – composition and uses of different distillates – ignition point, flash point and octane number – cracking.	2	
	9	Catalysts used in Petroleum Industries: Structure, selectivity and applications. Synthetic Petrol: Manufacture by Bergius and Fischer-Tropsch processes.	3	

	10	Manufacture of petrochemicals: Ethylene glycol, glycerine, acetone, phenol, vinyl acetate, toluene, linear alkyl benzenes and their sulphonates.	3	
	11	Usage and depletion of petroleum products – need for alternative fuel – hydrogen as the future fuel.	2	
III	Pharmace	eutical Industry (12 hrs)	12	20
	12	Drugs: Definition – History of drugs – Terminology: Prodrug, pharmacy, pharmacology, pharmacodynamics and pharmacokinetics (elementary idea only).	2	
	13	Antipyretics, analgesics and antacids (definition and examples, structures not expected)	2	
	14	Antihistamines, antibiotics, antiseptics and disinfectants, (definition and examples, structures not expected)	2	
	15	Anti-inflammatory agents, Sedatives, Tranquilizers, Hypnotics and Antidepressant drugs (definition and examples, structures not expected) – Preparation of paracetamol and aspirin.	3	
	16	Drug toxicity – Thalidomide tragedy (a brief study) – Effective use of drugs – Over dosage – Prescription and non-prescription drugs – Definition, examples, uses and side effects	2	
	17	Drug abuse- Medical applications of metal and metal oxide nanomaterials.	1	
IV	Fertilizer	Industry (12 hrs)	12	20
	18	Introduction- Nitrogeneous, phosphatic and potash fertilizers, NPK fertilizers, NPK value, Manufacturing methods of ammonium nitrate- Prilling method, Stengel method.	3	
	19	Urea–Manufacture from ammonia and carbon dioxide.	1	-
	20	Monoammonium Phosphate (MAP) and Diammonium Phosphate (DAP)- Manufacture from ammonia and phosphoric acid.	2	
	21	Potassium Chloride (muriate of potash)- main steps involved in the manufacture. Mining of the K mineral, Separation of the main ingredient and purifying.	3	
	22	Potassium Sulphate (sulfate of potash) - Manufacture from langbeinite (K_2SO_4 . MgSO ₄) and KCl. NPK (17-17-17)-Granulation method of manufacture.	3	
V	Chemical	industries in Kerala: (12 hrs)	12	20
	Open	Location, raw materials, chemistry involved in the preparation and uses of the following, caustic soda and chlorine – Travancore	12	1

Cochin Chemicals Ltd., TiO2 pigment from ilmenite – Travancore	
Titanium Products Ltd.	

References:

- 1. Industrial Chemistry (including chemical engineering) B.K. Sharma Goel publishing house, Meerut.
- 2. Pollution control in process industries S.P. Mahajan Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 3. Water pollution and management C.K. Varashney Wiley Eastern Ltd., Chennai 20
- 4. E. Stocchi, Industrial Chemistry, Vol. I, Ellis Horwood Ltd. UK, 1990.
- 5. P. C. Jain, M. Jain, Engineering Chemistry, Dhanpat Rai & amp; Sons, Delhi, 2015.
- 6. B. K. Sharma, H. Gaur, Industrial Chemistry, Goel Publishing House, Meerut, 1996.
- 7. G. L. Patrick, Introduction to Medicinal Chemistry, 6 th Edn., Oxford University Press, UK, 2017.
- 8. Hakishan Singh, V. K. Kapoor, Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan, Pitampura, New Delhi, 2005.
- 9. Thomas L. Lemke, David A. William, Foye's Principles of Medicinal Chemistry, 6 th Edn., Wolters Kluwer Health, 2006.
- 10. Jayashree Ghosh, A Text Book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999.
- 11. O. Le. Roy, Natural and synthetic organic medicinal compounds, Ealemi, 1976.
- 12. . Hand book on fertilizer technology fertilizer association of india near JNU New Delhi 1992
- 13. Sauchelli V. The chemistry and technology of fertilizers ACS Monograph no.148, Reinhold publishing Cor. NewYork 1980

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1						3		2		2		1
CO 2	2						3		2		2		1
CO 3					1	1	3		2		2		1
CO 4						1	3		2		3		12
CO 5						1	3		1		2		1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry				
Course Title	ADVANCED ENER	RGY MATE	RIALS		
Type of Course	ELECTIVE IN MA	JOR			
Semester	VI				
Academic	300-399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	1. Completion o	f an introduc	tory organic	chemistry or n	naterial
	science course	e is required.			
	2. Prior knowled	lge of semico	onductor phys	sics, particular	ly related
	to energy ban	ds and semic	onductor dev	ices, is necess	ary.
Course	This course covers es	sential comp	onents and te	chnologies for	r sustainable
Summary	energy production. S	Starting with	global ener	rgy needs and	ł renewable
	sources, it explores e	lectrode proc	esses and sol	ar cell materia	als. Students
	learn about photovol	taic principle	es, fuel cell	types, and ene	ergy storage
	methods like batterie	es and super	capacitors. 7	The course also	so discusses
	emerging technologie	es for renew	able energy	conversion, su	uch as solar
	thermal and water	splitting. T	hrough this	, students ga	ain a solid
	understanding of ma	terials vital	for sustaina	ble energy so	olutions and
	future energy technol	ogies.			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Comprehend the basic principles of energy harvesting and conversion technologies and the significance of materials in these processes.	U	F	Instructor- created exams / Quiz /Assignment
CO2	Assess the performance of different energy harvesting materials and devices, considering factors like efficiency and environmental impact	An	С	Class test /Assignment /Quiz

CO3	Engineer and refine systems for energy production using various materials	Ар	С	Assignment/ Class test			
CO4	Grasp how energy storage technologies operate, including batteries and supercapacitors	U	C	Assignments /Seminar presentation			
CO5	Evaluate the strengths and weaknesses of energy storage materials and technologies, focusing on factors such as lifespan and energy capacity	An	С	Assignments /Seminar presentation			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks
Ι	Energy I	Requirement	8	14
			1	
	2	Sustainable Sun's energy. Current status of renewable energy sources.	2	
	3	Overview of electrode processes. Reversible cells and irreversible cell reactions.	3	
	4	Primary and Secondary cells.	2	
II	Material	s for Energy Harvesting	16	26
	5	Solar Cells: Solar spectra, Semiconductors as Solar cell materials. P-N junction diode – Energy band diagram.	2	
	6	Principles of photovoltaic energy conversion – generation of photovoltage. I-V curves of solar cells.	3	-
	7	Types of photovoltaic Cells. First generation solar cell materials - Single and polycrystalline Silicon, Amorphous silicon.	3	
			3	
	9	Third generation solar cell materials - Quantum Dots, Organic materials, Dyes.	3	

	10	Types of Organic solar cells - Dye-sensitized solar cell (DSSC) and Polymer solar cells – General overview only.	2	
III	Material	s for Energy Conversion	12	20
	11	Fuel Cells: General overview of fuel cell technology.	1	
	12	Types of fuel cells - Alkaline, solid oxide, proton exchange membrane, and Direct methanol. Materials for electrodes, electrolytes in Fuel Cells.	4	
	13	Working principles of H ₂ -O ₂ fuel cell.	1	
	14	Hydrogen economy. Hydrogen generation and storage; limitations. Recent progress in fuel cells.	3	-
	15	Piezoelectric and Pyroelectric materials – Energy conversion mechanism with examples.	2	
	16	Thermo-electrics materials – Energy conversion mechanism with examples.	1	-
IV	Material	s for Energy Storage	12	20
	17	Different types of batteries	1	
	18	Electrode materials, electrolyte and cell reactions of Dry/Alkaline cell and Mercury cell battery. Discharge characteristics, Energy density.	2	
	19	Electrode materials, electrolyte and cell reactions of Lead-acid battery and Ni-Cd battery, Discharge characteristics, Energy density.	2	
	20	Electrode materials, electrolyte and cell reactions of Ni-Hydrogen battery and Lithium-ion/Lithium-polymer battery. Discharge characteristics, Energy density.	2	
	21	Supercapacitors- Types of Electrochemical Supercapacitors.	2	
	22	Electrode and electrolyte interfaces and their capacitances, Charge- Discharge characteristics, Energy/power density.	3	-
V	Renewal	ble energy conversion methods	12	20
	Open Ended	Solar thermal technologies, Water splitting and photocatalysis, Energy-related environmental aspects: CO ₂ capture, utilization, and conversion; recovery and recycling of energy materials.	12	

References:

 Chetan Singh Solanki, Solar photovoltaics : fundamentals, technologies and applications -Third ed. - New Delhi PHI Learning Private Limited, 2011.

- 2. P.H. Rieger, Electrochemistry, Prentice-Hall, 1987.
- 3. B.K. Hodge, Alternate Energy Systems and Applications, John Wiley & sons, 2010.
- A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Application. Wiley, 2001.
- 5. C. Brabec, Organic Photovoltaics, Wiley-VCH, 2008.
- 6. Bandarenka, A.S. (2022). Energy Materials: A Short Introduction to Functional Materials for Energy Conversion and Storage (1st ed.). CRC Press.
- V. Hacker, S. Mitsushima (Eds.), Fuel Cells and Hydrogen: From Fundamentals to Applied Research, Elsevier, 2018
- 8. K.E. Aifantis, S.A. Hackney, and R. V. Kumar (Ed.) High Energy Density Lithium Batteries Materials, Engineering, Applications, WILEY-VCH Verlag GmbH & Co. KGaA, 2010
- 9. Yu, A., Chabot, V., & Zhang, J. (2013). Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications (1st ed.). CRC Press

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1					1	3		1		2		1
CO 2	2				1	2	3		1		3		2
CO 3				1	2	1	3		2				3
CO 4					3	1	3		2		3		3
CO 5				2		3	3		2		2		3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	MATERIAL SCIEN	MATERIAL SCIENCE						
Type of Course	ELECTIVE IN MA	JOR						
Semester	VI							
Academic	300-399							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	1. Basics of solid	d-state chemi	istry					
	2. Brief idea abo	out material p	properties					
Course	The course in Materi	ial Science p	provides a co	mprehensive	overview of			
Summary	various materials an	nd their pro	operties, focu	using on app	olications in			
	different fields. It cov	ers the classi	ification of m	aterials based	on structure			
	and function, mecha	nical proper	ties, testing	methods, and	specialized			
	materials such as	ferroelect	tric, piezoe	lectric, mag	gnetic, and			
	superconducting materials. Additionally, it discusses composite							
	materials, including	their definition	on, classifica	tion, processi	ng methods,			
	and applications. Three	ough this cou	irse, students	gain a solid ui	nderstanding			
	of different materials	and their sig	nificance in	modern techno	ology.			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO 1	Develop an understanding of the classification of materials based on structure and function.	U	F	Instructor-created exams / Quiz /Assignment
CO 2	Acquire knowledge of mechanical properties and testing methods to evaluate material behavior.	U	С	Class test /Assignment /Quiz
CO 3	Explore specialized materials such as ferroelectric, piezoelectric, magnetic, and	Е	С	Assignment/ Class test

	superconducting materials and their applications.								
CO 4	Gain insight into composite materials, including their classification, processing techniques, and real-world applications.	E	Р	Assignments /Seminar presentation					
CO 5	Develop the ability to analyze and predict material behavior in various environments and applications	E	М	Assignments /Seminar presentation					
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Module	Unit	Content	Hrs	Marks	
Ι	Introductio	on to Material Science	12	20	
	1	Scope and importance of materials science. Classification of materials. Functional classification. Classification based on structure.	2		
	2	Mechanical properties – significance and terminology, the tensile test, true stress and true strain, bend test, hardness of materials.	3		
	3	Definition of ceramics. Traditional and new ceramics. Structure of ceramics. Atomic interactions and types of bonds.	2	•	
	4	Phase equilibria in ceramic systems, one component and multi component systems.	2		
	5	Use of phase diagrams in predicting material behavior.	1		
	6 Electrical, Magnetic, and Optical properties of ceramic materials.				
II	Materials f	or Special Purposes – I	12	20	
	7	Production of ultra-pure materials - zone refining, vacuum distillation and electro refining.	2		
	8	Ferroelectric and piezoelectric materials - general properties. Classification of ferroelectric materials.	2		

	0	Theory of formal activity formal activity domains applications	2	
	9	Theory of ferroelectricity, ferroelectric domains, applications.	3	
	10	Theory of Piezoelectricity. Piezoelectric materials and applications.	3	
	11	Metallic glasses - preparation, properties and applications.	2	-
III	Materials fo	or Special Purposes – II	12	20
	12	Magnetic materials, ferri, ferro and antiferromagnetism.	2	
	13	Metallic magnets, soft, hard & superconducting magnets.	2	
	14	Ceramic magnets, low conducting and superconducting magnets.	2	
	15	Superconducting materials - metallic and ceramic superconducting materials.	2	
	16	Theories of superconductivity, Meissner effect.	2	-
	17	High temperature superconductors - structure and applications.	2	-
IV	Composite	Materials	12	20
	18	Definition and classification of composites, fibres and matrices.	2	-
	19	Composites with metallic matrices – processing, solid and liquid state processing, deposition.	3	
	20	Ceramic matrix composite materials – processing, mixing & Pressing, liquid state processing, sol-gel processing & vapor deposition technique.	3	
	21	Interfaces in composites - mechanical & microstructural characteristics.	2	
	22	Applications of composites.	2	-
V	Materials fo	r Energy Harvesting and Storage	12	20
	Open	Detailed study of materials used in data storage devices, light	12	1

References:

1. W.D. Eingery, H.K. Dowen and R.D. Uhlman, Introduction to Ceramics, John Wiley.

- 2. A.G. Guy, Essentials of Material Science, McGraw Hill.
- 3. M.J. Starfield and Shrager, Introductory Material Science, McGraw Hill.

4. S.K. Hajra Choudhary, Material Science and Engineering, Indian Book Dist. Co., Calcutta.

5. M.W. Barsoum, Fundamentals of Ceramics, McGraw Hill, 1997.

- 6. M. Tinkham, Introduction to Superconductivity, McGraw Hill, 1975.
- 7. A.V. Narlikar and A.N.Endnote, Superconductivity and Superconducting Materials, South

Asian Publishers, New Delhi, 1983.

8. S.V. Subramanyan and E.S. Rajagopal, High Temperature Superconductors, Wiley Eastern Ltd., 1988.

9. Azaroff and Brophy, Electronic Processes in Materials, McGraw Hill, 1985.

10. C.M. Srivastava and C. Srinivasan, Science of Engineering Materials, Wiley Eastern

Ltd., 1987. R.J. Young, Introduction to Polymer Science, John Wiley and Sons.

11. K.K. Chowla, Composite Materials, Springer-Verlag, NY, 1987.

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1					1	3				3		1
CO 2					1	2	3		1		2		1
CO 3				1	3	1	3		1		2		3
CO 4				2	3	1	3		1		2		3
CO 5				3		3	3		1		2		3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry						
Course Title	INDUSTRIAL CATALYSIS						
Type of Course	ELECTIVE IN MA	JOR					
Semester	VIII						
Academic	400-499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	1. Basic understa	anding of sur	face chemist	ry			
	2. A sound know	vledge in rea	ction kinetics	and thermod	ynamics		
Course	The catalysis course	e covers ca	talyst prepa	ration, deact	ivation, and		
Summary	applications across v	various field	s. It include	s fundamenta	l principles,		
	preparation method	s, deactivat	ion mechan	isms, and	regeneration		
	techniques. Additiona	ally, it explor	es phase trans	sfer catalysis,	biocatalysis,		
	and industrial catalys	sis, focusing	on their prin	nciples, mech	anisms, and		
	applications such as oil-based chemistry, hydrocarbon synthesis, and						
	environmental protect	ction. Ultima	ately, studen	ts gain a con	mprehensive		
	understanding of cata	alytic process	ses and their	applications i	n chemistry,		
	environmental scienc	e, and materi	ials science.				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamental concepts in catalysis, including catalyst preparation, mechanisms of catalytic reactions, and catalyst deactivation processes.	U	F	Instructor-created exams / Quiz /Assignment
CO2	Apply various preparative methods, such as phase transfer catalysis, biocatalysis, and industrial catalysis, in the synthesis and transformation of chemical compounds.	Ар	С	Class test /Assignment /Quiz

CO3	Analyze and classify catalyst deactivation processes, including poisoning, coke formation, and sintering, and explore methods for catalyst regeneration.	An	С	Assignment/ Class test			
CO4	Evaluate the principles and applications of industrial catalytic processes in oil-based chemistry, hydrocarbon synthesis, environmental protection, and polymerization reactions.	Ε	Р	Assignments /Seminar presentation			
CO5	Explore emerging catalytic technologies such as biodiesel production, photocatalysis, and electrocatalysis, and understand their potential applications and challenges in contemporary industries and research fields.	E	М	Assignments /Seminar presentation			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks
Ι	Catalyst Prep	arative Methods and Deactivation	12	20
	1	Support materials -Preparation and structure of supports, Surface properties.	2	
	2 Preparation of catalysts- Introduction of precursor compound, Pre-activation treatment, Activation process.		2	
	3	General methods of synthesis of zeolites. Mechanism of nuclear formation and crystal growth. Structures of some selected zeolites. Zeolites A, X and Y. Shape selective catalysis.	3	
	4	Deactivation of catalysts- Classification of catalyst deactivation processes, Poisoning of catalysts, Coke formation on catalysts, Sintering of catalysts.	3	

	5	Regeneration of deactivated catalysts. Feasibility of regeneration. Description of coke deposit and kinetics of regeneration	2		
II	Phase Transfer	Phase Transfer Catalysis			
	6	Basic concepts in phase transfer catalysis. Phase transfer catalyzed reactions and their basic steps.	2		
	7 Effect of reaction variables on transfer and intrinsic rates. Outline of compounds used as phase transfer catalysts. Use of quaternary salts.				
	8	Macrocyclic and macrobicyclic ligands. PEG's and related compounds.	3		
	9	Use of dual phase transfer catalyst or co-catalyst in phase transfer systems.	2		
	10	Separation and recovery of phase transfer catalysts. Insoluble phase transfer catalysts.	2		
III	Biocatalysis		12	20	
	11	Enzymes. An introduction to enzymes. Enzymes as proteins.	2		
	12	Classification and nomenclature of enzymes. Structure of enzymes. Working of enzymes. Effect on reaction rate. Thermodynamic definitions.	2	-	
	13	Catalytic power and specificity of enzymes. Optimization of weak interactions between enzyme and substrate in the transition state.	3	-	
	14	Binding energy, reaction specificity and catalysis. Specific catalytic groups contributing to catalysis. Immobilized biocatalysts.	3	-	
	15	Definition and classification of immobilized biocatalysts. Immobilization of coenzymes.	2		
IV	Industrial Cata	alysis	12	20	
	16	Oil based chemistry- Catalytic reforming, Catalytic cracking, Paraffin cracking, Steam cracking.	1		
	17	Hydrocarbons from synthesis gas. Fisher-Tropsch process. Mobil process for conversion of methanol to gasoline hydrocarbons.	2		
	18	Catalysis for environmental protection, removal of pollutants from exhausts, mobile and static sources.	2		

	19	Hydroformylation of olefins. Carbonylation of organic substrates.	2	
	20	Conversion of methanol to acetic acid. Synthesis of vinyl acetate and acetic anhydride. Palladium catalyzed oxidation of ethylene.	3	
	21	Acrylonitrile synthesis. Zeigler-Natta catalysts for olefin polymerization.	1	
	22	Propene polymerization with silica supported metallocene/MAO catalysts	1	
V	Open Ended M	odule	12	20
	Open Ended	Biodiesel via catalytic process, Photocatalysis, Electrocatalysis, A survey of important Indian catalytic industries and their products. Experiments involving preparation of catalysts and catalytic reactions.	12	

References:

- 1. J.R. Anderson and M. Boudart (Eds), "Catalysis, Science and Technology", Vol 6, Springer- Verlag, Berlin Heildberg, 1984.
- 2. R.B. Anderson, "Experimental methods in catalysis research", Vol I, II, Academic press, NY, 1981.
- 3. R. Szostak, "Molecular sieves: principles of synthesis and identification", Van Nostrand, NY, 1989.
- 4. R. Hughes, "Deactivation of catalysts", Academic press, London, 1984.
- 5. C.M. Starks, C.L. Liotta and M. Halpern, "Phase Transfer Catalysis Fundamentals, Applications and Industrial Perspectives", Chapman & Hall, New York, 1994.
- 6. A.L. Lehninger, "Principles of Biochemistry", Worth Publishers, USA, 1987.
- 7. G. Ertl, H. Knozinger and J. Weitkamp, "Handbook of Heterogeneous Catalysis" Vol 1- 5, Wiley-VCH, Weinheim, 1997.
- 8. R.J. Farrauto and C.H. Bartholomew, "Fundamentals of Industrial Catalytic Processes", Blackie Academic and Professional Chapman and Hall, 1997.
- 9. R. Pearce and W.R. Patterson, "Catalysis and chemical processes", Academic press, Leonard Hill, London, 1981

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1						3		1		1		
CO 2	2				1	2	3		1		2		1
CO 3						1	3		2		2		1
CO 4				2		1	3		2		2		2
CO 5				2	1	3	3		2		2		2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	InternalAssignmentPractical SkillTheory/Practi/VivaEvaluationcal Exam		Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry						
Course Title	ADVANCED ORGANIC CHEMISTRY						
Type of Course	ELECTIVE IN MA	JOR					
Semester	VIII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-		60		
Pre-requisites	1. Prior knowled						
	2. Understanding	g the reaction	n mechanism	of different r	eactions		
	and rearrange	and rearrangements.					
Course	This course covers	reactions,	synthesis p	olanning, sup	oramolecular		
Summary	chemistry, and drug d	lesign					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand and apply named reactions and reagents in organic synthesis	U	Р	Quizzes /Seminar
CO2	To formulate synthetic strategies employing synthons, protecting groups, and reagents	An	С	Discussion/ Assignment
CO3	To conceptualize non- covalent interactions and applications in supramolecular chemistry	An	С	Seminar / Discussion
CO4	To Comprehend the principles of drug design and understand the	Ар	F	Discussion/Seminar /Assignment

	stages of drug development							
CO5	To Rationalize the mechanisms of redox reactions and substitution reactions involved in organic synthesis	Ар	An	Seminar/discussion				
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Module	Unit	Content	Hrs	Marks
Ι		9	18	
	1	Reformatsky reaction, Baeyer-Villiger oxidation, Beckman rearrangement,	3	
	2	Benzilic acid rearrangement, Benzoin Condensation, Claisen rearrangement,	2	
	3	Clemmenson reduction, Dies-alder reaction, Knoevenagel condensation,	2	
	4	Pictet-Spengler reaction, Strecker amino acid synthesis, Simmons- Smith reaction,	2	
II		Synthesis and Synthetic Planning	13	26
	5	Target molecules, Synthons, synthetic equivalents (anionic and cationic)	1	
	6	Disconnection	1	
	7	Protecting groups-alcohols (Bn, PMB, Ac, TBS) explain the concept with a reaction	2	
	8	Protecting groups-aldehydes (cyclic acetal) explain the concept with a reaction	2	
	9	Protecting groups-amines (Bz, Boc, Fmoc) explain the concept with a reaction	2	
	10	Protecting groups-acids (Me and t-Bu ester) explain the concept	2	

		with a reaction		
	11	Convergent and linear synthesis (demonstrate with an example)	1	
	12	Functional inter-group conversions (Any one example), retrosynthesis of chalcones.	2	
III		Supramolecular Chemistry	13	26
	13	Various types of non-covalent interactions (H bonding, van der Waals interactions, cation-pi interaction, pi-pi stacking) bonding and applications of addition compounds,	4	
	14	Crown ethers	2	
	15	Cyclodextrins	2	
	16	Cryptands, catenanes and rotaxanes.	2	
	17	Importance of supramolecular chemistry in living systems.	3	
IV		Principles of Drug Design	13	28
	18	Introduction to medicinal chemistry	2	
	19	Therapeutic index, solubility, Intermolecular binding forces in drug target interactions- (electrostatic, H bonding, van der Waals, dipole-dipole).	3	
	20	Introduction to various drug targets; Proteins- Enzymes- Receptors- their roles, neurotransmitters, receptor activation and regulation.	3	
	21	Introduction to Pharmacodynamics and pharmacokinetics (ADME); affinity and efficacy.	3	
	22	Types of drugs, stages of drug development (basic concept only).	2	
V		Open ended	12	
	Mode synth	ern Techniques in Organic Synthesis/Asymmetric Synthesis/Total esis		

References

- 1. Organic Chemistry, by Jonathan Clayden, Nick Greeves, Stuart Warren, Oxford University Press
- 2. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Wiley
- 3. Organic Chemistry Paperback, Francis Carey, McGraw-Hill Education.
- 4. Advanced Organic Chemistry, Jerry March.
- 5. Advanced Organic Chemistry, David E. Lewis, Oxford Univ Pr; Illustrated edition.
- 6. Principles of Organic Synthesis, R. O. C. Norman & J. M. Coxon, 3rd Ed., CRC Press, 2000.

- 7. The Art of Writing Reasonable Reaction Mechanisms, R. B. Grossman, 3rd Ed., Springer, 2019
- 8. Name reactions J J Li, Springer.
- 9. Medicinal Chemistry, Sriram and Yogeeswari, Pearson Education India; 2nd edition.
- 10. An Introduction to Medicinal Chemistry, Graham Patrick, Oxford University Press; International edition.
- 11. Organic Chemistry, Morrison Boyd & Bhattacharjee, Pearson Education India; 7th edition

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1						3		1		1		2
CO 2	2						3		2		3		3
CO 3	2						3		2		3		3
CO 4					2	1	3		2		3		3
CO 5				2	1	3	3		2		3		3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry									
Course Title	MODERN ORGANIC SYNTHESIS									
Type of Course	ELECTIVE IN MAJOR									
Semester	VIII									
Academic	400 - 499									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	4	-	-	60					
Pre-requisites	Preliminary idea abou	ut Reaction n	nechanism, re	eagents, organ	ometallic					
	chemistry, and Green	methods								
Course	This course explore	s various n	ame reaction	ns in organic	chemistry,					
Summary	reagents, multistep sy	nthesis, bioc	hemical syntl	hesis and mod	ern trends in					
	synthesis.									

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To develop an understanding and application of different named organic reactions	U	С	Test /Seminar
CO2	To gain expertise in the usage and reactions of various reagents, focusing on catalysis and substitution	U	С	Dicussion/ Assignment
CO3	To master the skills for multistep synthesis and biochemical synthesis with an emphasis on retrosynthetic analysis	An	С	Quizes/Test
CO4	To examine modern trends in synthesis, stressing on non-conventional methods,	Ар	Е	Discussion/Seminar /Assignment

	catalysts and eco-friendly approaches									
CO5	To evaluate the role of organic compounds and reactions in pharmaceutical chemistry with open-ended, practical outcomes	1	Р	Assignment/Test						
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 									

Module	Unit	t Content					
Ι	Named organic reactions						
	1 Peterson Reaction, Julia Reaction, Ugi Reaction, Passerini reactions 1						
	2	Ene reaction, Ritter Reaction, Biginelli reaction, Skraup quinoline synthesis	2				
	3	Dess Martin oxidation, Baylis Hillman reaction, Eschenmoser–Tanabe fragmentation	2				
	4	Nazarov cyclization, McMurry coupling, Pauson–Khand reaction	2				
	5	Pummerer rearrangement, Ramberg–Bäcklund reaction, Rubottom oxidation, Rupe rearrangement	3				
	6	Staudinger reduction, Vilsmeier–Haack reaction, Wacker oxidation	2				
II	Reagents and reactions						
	7	Reactions of carbene, umpolung, N-heterocyclic carbenes	1				
	8	Organocatalysis, Pd catalyzed reactions-Heck, Suzuki,	1				
	9	Suzuki, Stille Coupling	1				
	10	Cu catalyzed reactions- Buchwalds coupling	2				
	11	Synthesis of heterocycles by dipolar cycloaddition	2				
	12	Asymmetric hydrogenation	1				
	13	Alkenyl, allyl and ary silanes and their substitution reaction	2				
	14	Silanes and organo boron reagents and their reactions.	2				
III		Multistep synthesis and biochemical synthesis	12	30			

	15	Reterosynthetic analysis and Total synthesis of Longifoline (Corey, year),	3	
	16	Pencillin V (author, year) and cephallosporin (author, year), Tamiflu (author year)	3	
	17	Biosynthesis of mono and diterpenes,	2	
	18	Biosynthesis of morphine	2	
	19	Bio synthesis of lipids, fatty acids.	2	
IV		Modern Trends in Synthesis	12	16
	20	E factor, Non-conventional and eco-friendly reaction media- ionic liquids, supercritical CO ₂ .	4	
	21	Non-conventional energy sources- microwave, sonochemistry, electroorganic synthesis, visible light photocatalysis. Biomass valorisation, organocatalysis.	4	
	22	Reactions on solid acids bases, reactionson solid support, flow chemistry, enzyme catalyzed reactions, mechanochemistry, fluorous chemistry.	4	
V	Open	ended-	12	
	23	Advanced spectroscopic methods/organo main group chemistry		

References

- 1. ORGANIC CHEMISTRY, by Jonathan Clayden, Nick Greeves, Stuart Warren, Oxford University Press.
- 2. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Wiley.
- 3. Organic Chemistry Paperback, Francis Carey, McGraw-Hill Education
- 4. Advanced Organic Chemistry, David E. Lewis, Oxford Univ Pr; Illustrated edition
- 5. Principles of Organic Synthesis, R. O. C. Norman & J. M. Coxon, 3rd Ed., CRC Press, 2000.
- 6. Name reactions J J Li, Springer.
- Spectrometric Identification of Organic Compounds, 8ed Paperback 1 March 2022 Robert M. Silverstein, Francis X. Webster, David J. Kiemle, Wiley
- 8. Introduction to Spectroscopy, D. L. Pavia, 5th Ed., Cengage, 2015.
- 9. Organic Synthesis Special Techniques, V. K. Ahluwalia and Renu Aggarwal, Narosa Publishing house, Second Edn, 2015.
- 10. Organic chemistry, Stereochemistry and chemistry of natural products, I. L. Finar Vol. 2, Pearson.
- 11. Volgel's practical organic chemistry.

- 12. The Ritter Reaction: Trapping a Carbocation with a Nitrile, R. David Crouch, Journal of Chemical Education 1994 71 (8), A200, DOI: 10.1021/ed071pA200
- 13. Advanced methods of organic synthesis, W. Carruthers and Iain Colgham, Cambridge University Press; 4th edition (10 April 2015)

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	РО 2	РО 3	PO 4	PO 5	PO 6	PO 7
CO 1	2		1	1	1	1	3		1		1		2
CO 2	2		1	1	1	1	3		2		3		3
CO 3	2	_	2	2	1	2	3		2		3		3
CO 4	2	-	2	2	2	2	3		2		3		3
CO 5	1	-	1	1	1	1	3		2		3		3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/Practi cal Exam	Assignme nt /Viva	Practical Skill Evaluation	End Semester Examination s
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry	/						
Course Title	COMPUTATIONAL CHEMISTRY							
Type of Course	ELECTIVE IN MAJOR							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit	Lecture per	Tutorial	Practical	Total			
		week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	1. A solid unders	standing of fun	damental cher	mistry principles, in	ncluding			
	atomic structure,	atomic structure, chemical bonding, molecular geometry, and chemical						
	reactions.							
	2.Knowledge of basic physics principles, particularly classical mechanics							
	and electromagnetism, as well as an understanding of quantum mechanics							
	at an introductor	y level.						
Course	This course provide students with theoretical knowledge and practical skills							
Summary	in using computational methods to solve chemical problems. The course							
	U	covers a range of topics, including introduction to computational methods,						
	molecular mode	ling, and mole	cular dynamic	es simulations, and	emphasizes			
	hands-on experie	ence with comp	outational tool	s and software.				

Course Outcomes (CO):

СО	CO Statement	Cognitiv e Level*	Knowled ge Category #	Evaluation Tools used
CO1	Understand the history, scope, definitions, and fundamentals of computational chemistry including computational methods and Molecular modelling Techniques.	U	F	Instructor- created exams / Quiz /Assignment
CO2	Apply a variety of computational methods used in chemistry, such as molecular mechanics (MM), and Monte Carlo	Ар	С	Class test /Assignment /Quiz

	simulations, to solve chemical problems and analyze molecular systems.			
CO3	Effectively utilize computational software package Guassian commonly employed in chemical research, to perform calculations, analyze data, and visualize molecular structures and properties.	U	Р	Assignment/ Class test
CO4	Interpret computational results obtained from simulations and calculations, including molecular structures, energetics, spectroscopic properties, and reaction mechanisms, and relate them to experimental observations.	An	С	Assignments /Seminar presentation
CO5	Explore applications of computational chemistry in various fields, such as drug discovery, materials science, catalysis, and environmental chemistry, and understand how computational methods contribute to advancing scientific research and solving real-world problems.	Ap	М	Assignments /Seminar presentation
# - Factu	ember (R), Understand (U), Apply (Ap), Analy al Knowledge(F) Conceptual Knowledge (C) pritive Knowledge (M)			

Module	Unit	Content	Hrs	Marks			
Ι	Intro	Introduction to Computational Chemistry					
	1 Theory, computation & modeling – Definition of terms.		2	-			
	2 Need of approximate methods in quantum mechanics. Computable Quantities – structure, potential energy surfaces and chemical properties.						
3 Cost & Efficiency – relative CPU time, software.		Cost & Efficiency – relative CPU time, software & hardware.	2	-			
	4 Classification of computational methods.						
II	Comp	outer Simulation Methods- I	9	15			

	6	Introduction – molecular dynamics and Monte Carlo methods.	2			
	7	Calculation of simple thermodynamic properties - energy, heat capacity, pressure and temperature, phase space, practical aspects of computer simulation.	3			
	8	2				
	9	2				
III	Comp	outer Simulation Methods- II	12	20		
	10	Molecular dynamics (MD) method – molecular dynamics using simple models	2			
	11	MD with continuous potentials, finite difference methods, choosing the time step, setting up and running a MD simulation.	3			
	12	Monte Carlo (MC) method - calculating properties by integration, .	3	-		
	13Metropolis method, random number generators.		2			
	14	MC simulation of rigid molecules.	2			
IV	IVab intio Methods and basic concepts of Density Functional Theory in Computational Chemistry					
	15	Review of Hartree – Fock method for atoms, SCF treatment of polyatomic molecules.	2			
	16	Closed shell systems - restricted HF calculations;Open shell systems – ROHF and UHF calculations; The Roothan – Hall equations, Koopmans theorem	2	-		
	17HF limit & electron correlation, Introduction to electron correlation (post -HF) methods		3	-		
	18 Basics of DFT- Applications of computational chemistry in various fields, such as drug discovery, materials science, catalysis, and environmental chemistry, and understand how computational methods contribute to advancing scientific research and solving real-world problems.		3			
	19	Hydrogen-like, Slater-type & Gaussian type basis functions, classification of basis sets – minimal, double zeta, triple zeta, split-valence, polarization & diffuse basis sets, even tempered & well-tempered basis sets, contracted basis sets,	3			

	20	Pople-style basis consistent basis choice of metho time.	3		
V	Representation of Calculatins Open Ended		Molecular Geometry and Guassian led) Specification of molecular geometry using a) Cartesian coordinates and b) Internal coordinates. The Z-matrix, Z- matrices of some simple molecules like H2, H2O, formaldehyde ammonia and	12 12	20
			methanol. Simple calculations using Gaussian programme		

References:

- C. J. Cramer, Essentials of computational Chemistry: Theories and models, John Wiley & Sons 2002.
- 2. Frank Jensen, Introduction to Computational Chemistry, John Wiley & Sons LTD1999.
- J. Foresman & Aelieen Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., 2000.
- David Young, Computational Chemistry- A Practical Guide for Applying Techniques to Real- World Problems", Wiley -Interscience, 2001.
- 5. Errol G. Lewars, Computational Chemistry: Introduction to the theory and applications of molecular quantum mechanics, 2 nd edn, Springer2011.
- 6. I.N. Levine, Quantum Chemistry, 6th Edition, Pearson Education Inc., 2009.
- P.W. Atkins & R.S. Friedman, Molecular quantum mechanics, 4th Edition, Oxford University Press, 2005.
- W. Koch, M.C. Holthausen, "A Chemist's Guide to Density Functional Theory", Wiley VCH Verlag2000.

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	1					3		1	1	1		1
CO 2	2	2					3		2	2	2		2
CO 3		3					3		2	2	2		3
CO 4		3					3		2	2	2		3
CO 5		3					3		2	2	2		3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	PETROCHEMICALS AND COSMETICS							
Type of Course	ELECTIVE IN MAJOR							
Semester	VIII							
Academic	400-499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	 A fundamental understanding of general chemistry is essential. Proficiency in organic chemistry is crucial, as petrochemicals and cosmetics are primarily composed of organic compounds. Knowledge of analytical chemistry techniques used for the characterization and analysis of petrochemicals and cosmetic products, 							
	such as chromatograp beneficial.	ohy, spectros	copy, and ma	ss spectromet	ry, may be			
Course Summary	of petroleum products necessary for career control, and environm	This course aim to provide students with a comprehensive understanding of petroleum products and their purification processes, as well as the skills necessary for careers in petroleum refining, petrochemicals, quality control, and environmental compliance. Study of the various ingredients used in cosmetics, including their sources, functions, properties, and						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	A comprehensive understanding of the petrochemical industry, including its role in the global economy, key players, and major processes involved.	U	F	Instructor- created exams / Quiz /Assignment
CO2	Understanding of the composition of petroleum, including the various hydrocarbon compounds present and their physical and chemical properties. Understanding of synthetic methods for producing	Ар	С	Class test /Assignment /Quiz

	organic compounds from hydrocarbons.							
CO3	Realizing the physical and chemical properties of different hydrocarbon fractions in crude oil, including their boiling points, densities, viscosities, and reactivities. Familiarity with the principles of distillation. Understanding of the equipment and processes used in crude oil distillation.	U	Р	Assignment/ Class test				
CO4	Familiarise with the diverse range of products derived from petroleum refining and the purification techniques employed to remove impurities from petroleum products.	An	С	Assignments /Seminar presentation				
CO5	Explore applications of petro chemistry in various fields, such as cosmetic and perfume industry and also the various ingredients used in perfumes and cosmetics, including natural and synthetic fragrances, essential oils, emollients, surfactants, preservatives, colorants, and other functional additives.	Ар	М	Assignments /Seminar presentation				
# - Fa	and other functional additives. * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Module	Unit	Content	Hrs	Marks
Ι	Introduction	n to Petrochemistry	9	15
	1	Introduction. Petroleum. Refining of crude oil.	2	
	2	Fuels for internal combustion engines. Knocking, Octane	3	
		number. Unleaded petrol. Diesel Engine and Cetane number.		
	3	Cracking. Thermal, Catalytic. Mechanism of cracking process.	2	
	4	Reforming Activation Gasoline. Petrochemicals.	2	
II	Hydrocarbo	ons from Petroleum and Industrial organic synthesis	12	20
	6	Introduction. Raw materials. Saturated hydrocarbons from	2	
		natural gas. Uses of saturated hydrocarbons. Unsaturated		
		hydrocarbons – Acetylene, Ethylene, Propylene.		
	7	Aromatic hydrocarbons - Benzene. Toluene. Chemical	3	
		processing of paraffin hydrocarbons. Chemical processing of		
		ethylene hydrocarbons. Chemical processing of acetylene.		
		Chemical processing of aromatic hydrocarbons.		

	8	Introduction to industrial organic synthesis from Petroleum. The raw materials and basic processes. Chemical process used in industrial organic synthesis.	2	
	9	Petrochemicals- Methanol. Important points. Ethanol. Important points. Rectified spirit from beer. Methylated spirit. Proof spirit.	3	
	10	Preparation of the absolute alcohol from rectified spirit.		-
	10	Acetaldehyde. Acetic acid. Isopropanol. Ethylene glycol. Glycerine. Acetone. Phenol. Formaldehyde. Important points.	2	
III	Compositio	n of Petroleum Crude and Distillation of Crude Petroleum	15	25
	11	Composition of petroleum crude. Composition of the petroleum products. Isomeric compounds. Classification of petroleum crude	2	
	12	Physical Properties and Test Methods. 1. Viscosity: Other methods for finding out viscosity. Viscosity of an oil blend. Use of the figure for finding out viscosity. Viscosities of hydrocarbons. 2. Density, 3. Surface and interfacial tensions. 4. Refractive Index. 5. Flash and fire points. 6. Cloud and pour points. 7. Aniline point. 8. Diesel index. 9. Cetane number. 10. Octane number and knock characteristics.	5	
	13	Preparation of petroleum for processing. Destruction of petroleum emulsion. Electric desalting plants. Methods of petroleum distillation. Distillation of crude petroleum.	3	
	14	Treatment of the residual liquid processing of liquid fuels such as petroleum and petroleum products. Storage tanks. Rectification columns. Cap tray or bubble tray columns.	3	
	15	Heat exchange apparatus. Steam space heaters or boilers. Condensers. Pipe furnaces. Pipelines. Fitting Compressors and pumps.	2	
IV	Petroleum	products and their purification	12	30
	16	Introduction. Classification of petroleum products. Liquefied hydrocarbons, gases and fuels. Fuel oils or boiler oils. Fuel for Jet engines and gas turbine engines.	2	
	16	Lubricants, Paraffins, ceresins, petroleum. Miscellaneous petroleum products.	2	
	17	Products of petrochemical and basic organic synthesis. Dye intermediates. Lacquers. Solvents. Thinners.	2	
	18	Absorptive and adsorptive purification. Sulphuric acid purification.	3	
	19	Hydrorefining. Purification in a DC electric field. New methods of purification. De mercaptanisation.	3	
V	Perfumes a	nd Cosmetics (Open Ended)	12	20
	Open Ended	Perfumes: Introduction. Esters. Alcohols. Ketones. Ionones. Nitromusks. Aldehydes. Diphenyl compounds. Production of natural perfumes. Flower perfume. Fruit flavours. Artificial flavours. Colognes and after shave preparation. Deodorants and Antiperspirants. Cosmetics: Introduction. Shampoos. Ingredients. Recipe. Hair dyeing. Materials used. Colour and	12	

Curl of Hair. Creams and Lotions. Skin Chemicals. Their	
ingredients. Preparation and recipe. Lipsticks. Ingredients.	
Preparation and recipe.	

References:

- 1. B. K. Sharma, Industrial Chemistry, Goel Publication, Goa.
- 2. N. K. Sinha, Petroleum Refining and petrochemicals,
- 3. John W. Hill, Chemistry for Changing times, Surjeet Publication
- Uttam Ray Chaudhuri, "Fundamentals of Petroleum and Petrochemical Engineering", Boca Raton London New York.
- 5. S ukumar Maiti, "Introduction to Petrochemicals" India Book House Pvt Ltd.
- 6. Gabriella Baki, Kenneth S. Alexander, "Introduction to Cosmetic Formulation and Technology", Wiley.
- 7. Tony Curtis, David Williams, "Introduction to Perfumery", Micelle Press; 2nd edition ., 2000.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
C O 1		1	2				3		1		2		1
C O 2		1		1	2		3		1		1		1
C O 3						3	3		2		2		1
C O 4						3	3		2				1

Mapping of COs with PSOs and POs:

C	3	3	2	2	1
0					
5					

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry							
Course Title	ADVANCED TOPICS IN INORGANIC CHEMISTRY							
Type of Course	ELECTIVE IN MAJOR							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	4	-	-	60			
Pre-requisites	IR spectroscopy							
	Types of ligands							
	Preliminary idea about		sbauer and N	MR spectra of	f complexes			
	Ligand exchange read	ctions						
	Types of magnetic pr	operties of co	omplexes					
Course Summary	This course gives an i	nsight to the	application of	f IR spectrosco	py in coordination			
	complexes							
	This course helps to	o analyse co	mplexes using	ng ESR, Mos	ssbauer and NMR			
	spectra							
	It provides the know	ledge of fasc	inating appli	cations of con	nplexes in medical			
	field							
	This course explains	the anomalou	is magnetic p	properties of co	omplexes			
	This course enables the	he student to	analyse diffe	rent character	istics of a complex			
	using various spectro	scopic techni	iques					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and apply infrared spectroscopy techniques for characterizing coordination compounds	Ар	С	Instructor-created exams / Assignments
CO2	Interpret the role of ESR and Mossbauer spectroscopic techniques in	Ap	С	Assignment / seminar/Quiz

	elucidating complex structures			
CO3	Evaluate the application of metal complexes in the medicinal field and their interaction with biological entities	E	С	Assignment/Seminar/Class test
CO4	Analyze the significance of anomalous magnetic moments in understanding complex structures and dynamics	An	С	Class Test/ Assignment/Viva Voce
CO5	Perform spectral analysis of complexes and solve related problems using IR, ESR and Mossbauer techniques	Ар	Р	Group work /Assignment/class test/
* - Rem		(U), Apply (A	p), Analyse (An)	, Evaluate (E), Create (C)
	_	ceptual Knowle	edge (C) Procedu	ral Knowledge (P) Metacognitive
Knowle	dge (M)			

Module	Unit	Content	Hrs (48+12)	Mark
Ι	_	ARACTERIZATION OF COORDINATION	13	26
	U	OMPLEXES USING IR SPECTROSCOPIC TECHNIQUES		
	1	Infrared spectra of metal complexes. Group frequency concept.	1	
	2	Changes in ligand vibrations on coordination-	2	
	3	Effect of complex formation on symmetry, electronic structure and bonding characteristics of ligands –	4	
	4	Coordination of nitrate ion, sulphate ion, acetate ion, perchlorate ions, cyano group - metal ligand vibrations – water as a ligand –	3	
	5	IR spectroscopy of carbonyl complexes -	1	

	6	Application of IR spectroscopy in coordination complexes –	2	
Π		CHARACTERIZATION OF COORDINATION COMPLEXES USING ESR AND MOSSBAUER SPECTROSCOPIC TECHNIQUES	10	22
	1	ESR spectra- Introduction	1	
	2	Importance of g values in structure elucidation of complexes	1	
	3	Application of ESR measurements to magnetically dilute and concentrated complexes -	2	
	4	Mossbauer spectra - application to iron complexes –	2	
	5	Factors affecting the chemical shift in coordination complexes	2	
	6	NMR spectra of diamagnetic copper complexes	2	
III		APPLICATIONS OF METAL COMPLEXES IN MEDICINAL FIELD	15	28
	1	Introduction – DNA-metal complex interaction –	2	
	2	Effect of Ligand exchange reactions and redox reactions in biological activity of metal complexes -	2	
	3	Effect of catalytic activity and photo physical activity on biological activity	2	
	4	Virtual screening of pharmacological behaviour - Drug likeness and bioavailability	2	
	5	Lipinski's Rule of 5 - Pharmacokinetic analysis of a drug molecule –ADMET	2	
	6	Analysis – In vitro and in vivo studies	2	
	7	Molecular docking.	1	
	8	Biological activities of transition metal complexes of Schiff bases, aromatic hydrazones	2	
IV	Al	NOMALOUS MAGNETIC MOMENTS OF METAL COMPLEXES	10	22
	1	Introduction – Equilibrium between two spin states	1	
	2	Magnetically non-equivalent sites in the metal ions – solute-solvent interactions	1	
	3	solute-solute interaction – configurational equilibrium – Antiferromagnetism – types –	2	
	4	antiferromagnetic exchange pathways –examples of antiferromagnetic binuclear complexes (Cu(II), V(IV))	2	

	5	Binuclear complexes with non-equivalent ions	2	
	6	Ferromagnetism – Trinuclear complexes	2	
v	SPEC	CTRAL ANALYSIS OF COMPLEXES (Open ended)	12	
		SR and Mossbauer spectral analysis of some complexes lem solving)		

REFERENCES

- 1. Concise Coordination Chemistry, 1/e, R Gopalan & V Ramalingam, Vikas Publishing
- C.N. Banwell, Fundamentals of molecular Spectroscopy, 3rd ed. TMH, New Delhi, 1983.
- E.A.V. Ebsworth, Structural Methods in Inorganic Chemistry, 3rd ed., ELBS, Great Britain, 1987.
- 4. Drago, R. S. Physical Methods in Chemistry W. B. Saunders: Philadelphia, 1977.
- 5. Elements of Magnetochemistry by R L Dutta and A Shyamal, Edition, 2 ; Publisher, Affiliated East-West Press, 1993 ; ISBN, 818533692X, 9788185336923
- 6. Textbook of Drug Design and Discovery, Edited by Kristian Strømgaard Povl Krogsgaard-Larsen Ulf Madsen, CRC Press Taylor & Francis Group.
- A Closer Look at Coordination Complexes, Sandeep Kaur-Ghumaan, Series: Chemistry Research and Applications, BISAC: SCI013030, DOI: <u>https://doi.org/10.52305/ENZL4915</u>

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
C O 1	3	1	2				3		1		1		1
C O 2	3	1		1	2		3		1		1		2
C O 3	3				2	2	3		1		2		3
C O 4						2	3		1		2		3
C O 5						2	3		1		3		3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

	Internal Theory/Pr actical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	~		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

MINOR COURSES

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme **B.Sc Chemistry** Course Title **BASIC INORGANIC AND NANO CHEMISTRY** Type of Course MINOR Semester Ι 100-199 Academic Level **Course Details Total Hours** Credit Lecture Tutorial Practical per week per week per week 4 75 3 _ 2 Concept of atom and molecule **Pre-requisites** Constituents of the atom, Rutherford's model of the atom. Periodic table and classification of elements to different blocks, Basic knowledge of qualitative and quantitative analysis Titration and use of indicators **Course Summary** This course is intended to provide basic knowledge in inorganic chemistry and nanochemistry. The student gets an understanding of the Bohr model of the atom and the modern quantum mechanical model of the atom through the first module of this course. Different types of chemical bonding are also included in the first module. General properties of the atom and the variation of these properties in the periodic table are also discussed in this course. Basic principles of analytical chemistry are included in the third module of this course which includes acidbase titration, redox titration, complexometric titration, and mixture analysis. This course also tries to explore the basic principles and importance of nanochemistry. To master the laboratory skills acid-base titration, and redox titration experiments are incorporated into this course structure.

CO	CO Statement	Cognitiv	Knowledge	Evaluation
		e Level*	Category#	Tools used
CO1	To Understand the structure of atoms			Instructor-
	and rules regarding the arrangement	U	С	created exams
	of electrons in an atom.			/ Quiz
				/Assignment
CO2	To discuss the chemical bonding,			Instructor-
	theories of chemical bonding and	U	F	created exams
	predict molecular shapes using			/ Quiz
	VSEPR theory			/Assignment

CO3	To Comprehend periodic properties,			Instructor-		
	understand laws and the concept of	U	F	created exams		
	the modern periodic table, and its			/ Quiz		
	implications			/Assignment		
CO4	To Master the principle of volumetric			Instructor-		
	analysis, understand the separation	U	С	created exams		
	of cations in qualitative analysis			/ Quiz		
				/Assignment		
CO5	To understand the basics of Nano			Instructor-		
	chemistry & to describe the synthesis	U	F	created exams		
	of nanomaterials, carbon nanotubes,			/ Quiz		
	and their applications,			/Assignment		
CO6	To Perform different titrations and			Lab work		
	execute open-ended experiments	Ap	Р			
	safely and effectively					
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)					
# - Fa	ctual Knowledge(F) Conceptual Knowledge (C) Procedura	al Knowledge	(P)		
Metac	cognitive Knowledge (M)					

Module	Unit	Content	Hrs	Mark
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations, Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
Ι	3	1		
1	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ ⁺ , SO ₄ ²⁻	2	
	7	Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	

	8	Molecular Orbital theory: LCAO – Electronic	2	
		configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation of bond order and its applications.(Bond length and bond strength), Comparison of VB and MO theories	2	
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves,	5	10
		X-ray studies of Henry Mosley, Moseley's periodic law - Modern periodic law – Long form periodic table.	2	
Π	10	Periodicity in properties: Atomic and ionic radii, Ionization enthalpy - Electron affinity (electron gain enthalpy) – Electronegativity, valency, Oxidation number (Representative element), metallic and non- metallic character, inert pair effect,	3	
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept – Molar volume - Oxidation and reduction – Equivalent mass.	2	
	12	Methods of expressing concentration: Molality, molarity, normality, ppm, and mole fraction.	2	
	13	Dilution formula, Theory of volumetric analysis – Acid-base, redox, and complexometric titrations :	3	
III	14	acid-base, redox, and complexometric indicators. Double burette method of titration: Principle and advantages.	2	
	15	Principles in the separation of cations in qualitative analysis	2	
	16	Common ion effect and solubility product and its applications in qualitative analysis	2	
	17	Microanalysis and its advantages. Accuracy & Precision (mention only).	2	
		Nano Chemistry	10	20
IV	18	Introduction, Definition of nanomaterials and nanotechnology –Classification of nanomaterials based on dimension with examples for each 0D, 1D, and 2D	2	
ŢĂ	19	Synthesis of nanomaterials: top-down processes and Bottom–up processes	2	
	20	Carbon nanotubes, Types of Carbon nanotubes – SWCNT and MWCNT, Synthesis of Carbon nanotubes - electric arc discharge, laser ablation, and chemical vapor deposition.	3	

	21	Important properties of carbon nanotubes and	1	
	21	applications of carbon nanotubes.	•	
	22	Fullerenes, graphene - (basic concept only, no	2	
		classification is required) Applications of	2	
		nanomaterials.		
			20	
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		
		General Instructions		
		For weighing electronic balance must be used. For		
		titrations, double burette titration method should be		
		used. Standard solution must be prepared by the		
		student. Use a safety coat, gloves, shoes and goggles in		
		the laboratory. A minimum of 7 experiments must be		
		done. Out of the seven experiments, one is to be open-		
		ended which can be selected by the teacher		
		Importance of lab safety – Burns, Eye accidents, Cuts,		
		gas poisoning, Electric shocks, Treatment of fires, Precautions and preventive measures.		
		Weighing using electronic balance, Preparation of		
		standard solutions.		
		Neutralization Titrations		
	Ι	1. Strong acid – strong base.		
	1	2. Strong acid – weak base.		
		3. Weak acid – strong base.		
		Redox Titrations - Permanganometry:		
	II	4. Estimation of oxalic acid.		
		5. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt		
		Redox Titrations - Dichrometry		
		6. Estimation of Fe ₂₊ /FeSO4.7H ₂ O/Mohr's salt		
		using internal indicator.		
		7. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt		
		using external indicator.		
		Redox Titrations - Iodimetry and Iodometry:		
		8. Estimation of iodine.		
V		9. Estimation of copper		
		Open-ended experiments - Suggestions		
		Iodometry: Estimation of chromium.		
	III	Determination of acetic acid content in vinegar by		
		titration with NaOH.		
		Determination of alkali content in antacid tablets by		
		titration with HCl.		
		Determination of available chlorine in bleaching		
		powder.		

References

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. M. A. Shah, Tokeer Ahmad, *Principles of Nanoscience and Nanotechnology*, Narosa Publishing House, New Delhi, 2010.
- 8. T. Pradeep, *A Textbook of Nanoscience and Nanotechnology*, McGrawhill, New Delhi, 2012.
- 9. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	O5	06							
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6	\checkmark	\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme **B.Sc Chemistry** Course Title **BASIC INORGANIC AND BIO-INORGANIC CHEMISTRY** Type of Course **MINOR** Semester I 100-199 Academic Level **Course Details** Credit Lecture Tutorial Practical **Total Hours** per week per week per week 4 75 2 3 _ Concept of atom and molecule **Pre-requisites** Constituents of the atom, Rutherford's model of the atom. Periodic table and classification of elements to different blocks. Basic knowledge of qualitative and quantitative analysis Titration and use of indicators **Course Summary** This course is intended to provide basic knowledge in inorganic chemistry and nanochemistry. The student gets an understanding of the Bohr model of the atom and the modern quantum mechanical model of the atom through the first module of this course. Different types of chemical bonding are also included in the first module. General properties of the atom and the variation of these properties in the periodic table are also discussed in this course. Basic principles of analytical chemistry are included in the third module of this course which includes acidbase titration, redox titration, complexometric titration, and mixture analysis. This course also tries to explain the roles of metal ions in biological systems and understand the biochemistry of certain key elements. To master the laboratory skills acid-base titration, and redox titration experiments are incorporated into this course structure.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To Understand the structure of atoms and rules regarding the arrangement of electrons in an atom.	U	С	Instructor- created exams / Quiz
CO2	To discuss the chemical bonding, theories of chemical bonding and predict molecular shapes using VSEPR theory	U	F	Class test /Assignment / Quiz

CO3	To Comprehend periodic properties, understand laws and the concept of the modern periodic table, and its implications	U	F	Class test /Assignment / Quiz			
CO4	To Master the principle of volumetric analysis, understand the separation of cations in qualitative analysis	U	С	Class test /Assignment / Quiz			
CO5	To Explain roles of metal ions in biological systems and understand the biochemistry of certain key elements	U	F	Class test /Assignment / Quiz			
CO6	To Perform different titrations and execute open-ended experiments safely and effectively	Ар	Р	Lab work			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Marks
		Atomic structure and Chemical Bonding	15	34
	1 Bohr atom model, merits and it Heisenberg uncertainty principle, Lou matter waves – dual nature.		2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ ⁺ , SO ₄ ²⁻	2	
	7 Valence Bond theory - Hybridisation involving and d orbitals: SP (acetylene), SP ² (ethylene), S (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)		2	
	8	Molecular Orbital theory: LCAO – Electronic configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation	2	

		of bond order and its applications.(Bond length and		
-		bond strength), Comparison of VB and MO theories Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves,	5	10
	9	X-ray studies of Henry Mosley, Moseley's periodic law	2	
		- Modern periodic law – Long form periodic table.	4	
II	10	Periodicity in properties: Atomic and ionic radii,		
	10	Ionization enthalpy - Electron affinity (electron gain	3	
		enthalpy) – Electronegativity, valency, Oxidation	-	
		number (Representative element), metallic and non-		
		metallic character, inert pair effect,		
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept –	2	
		Molar volume - Oxidation and reduction – Equivalent		
		mass.		
	12	Methods of expressing concentration: Molality,	2	
		molarity, normality, ppm, and mole fraction.		
	13	Dilution formula, Theory of volumetric analysis -	3	
		Acid-base, redox, and complexometric titrations :		
III	14	acid-base, redox, and complexometric indicators.	2	
		Double burette method of titration: Principle and		
		advantages.		
	15	Principles in the separation of cations in qualitative	2	
		analysis		
	16	Common ion effect and solubility product and its	2	
		applications in qualitative analysis –		
	17	Microanalysis and its advantages. Accuracy &	2	
		Precision (mention only).		
		Bio-inorganic Chemistry	10	20
	18	Metal ions in biological systems - Biochemistry of	2	
		iron, Haemoglobin and myoglobin,		
	19	O ₂ and CO ₂ transportation (mechanism not	2	
		required) - Chlorophyll and photosynthesis		
IV		(mechanism not expected)		
	20	Elementary idea of structure and mechanism of	2	
		action of sodium potassium pump		
	21	Biochemistry of zinc and cobalt. Toxicity of metal ions	•	
		(Pb, Hg and As).	2	
	22	Anticancer drugs: <i>Cis</i> -platin, oxaliplatin,– Structure and	•	
		significance.	2	
	1	Basic Inorganic Chemistry Practical:	30	

		General Instructions	
		For weighing electronic balance must be used. For	
		titrations, double burette titration method should be	
		used. Standard solution must be prepared by the	
		student. Use a safety coat, gloves, shoes and goggles in	
		the laboratory. A minimum of 7 experiments must be	
		done. Out of the seven experiments, one is to be open-	
		ended which can be selected by the teacher	
		Importance of lab safety – Burns, Eye accidents, Cuts,	
		gas poisoning, Electric shocks, Treatment of fires,	
		Precautions and preventive measures.	
		Weighing using electronic balance, Preparation of	
		standard solutions.	
		Neutralization Titrations	
		1. Strong acid – strong base.	
	Ι	 Strong acid – weak base. Wook acid – strong base 	
		3. Weak acid – strong base.	
		Redox Titrations - Permanganometry:	
		4. Estimation of oxalic acid.	
		5. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt	
V	II		
		Redox Titrations - Dichrometry	
		6. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt	
		using internal indicator.	
		7. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt	
		using external indicator.	
		Redox Titrations - Iodimetry and Iodometry:	
		8. Estimation of iodine.	
		9. Estimation of copper	
		Open-ended experiments - Suggestions	
		Iodometry: Estimation of chromium.	
	III	Determination of acetic acid content in vinegar by	
		titration with NaOH.	
		Determination of alkali content in antacid tablets by	
		titration with HCl.	
		Determination of available chlorine in bleaching	
		powder.	

References

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, Advanced Inorganic Chemistry, Vol. 1, 5th Edn., S. Chand and Sons, New

Delhi, 2012.

- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. G. L. Meissler, D. A. Tarr, Inorganic Chemistry, 3rd Edn. Pearson Education, 2004.
- 8. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, *Inorganic Chemistry*, 5th Edn., Pearson, 2009.
- 9. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
СО	2	-			2	Ŭ	1	-	5	-	1	•	,
1											_		
CO 2	2				2		1				1		
CO 3	1				2		1				1		
CO 4	1		1		2		1				1		
CO 5	1				2		1				1		
CO 6			2		1		1		1		2		

Mapping of COs with PSOs and POs:

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6		\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	BASIC INORGANIC AND GREEN CHEMISTRY						
Type of Course	MINOR						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
	Concept of atom and	molecule					
Pre-requisites	Constituents of the at	om, Rutherfo	ord's model o	of the atom.			
	Periodic table and cla	ssification of	f elements to	different bloc	ks,		
	Basic knowledge of c	-	d quantitative	e analysis			
	Titration and use of in						
Course Summary	This course is intende	ed to provide	basic knowl	edge in inorg	anic chemistry and		
	nanochemistry. The s	-		-			
	and the modern quant				0		
	of this course. Differe	• •		•			
	module. General pro	-					
	the periodic table are			-			
	chemistry are include						
	base titration, redox		-		-		
	This course also tries		-	-	• • •		
	and applications. To		•				
	titration experiments	are incorpora	ated into this	course structu	ire.		

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	To Understand the structure of atoms			Instructor-
	and rules regarding the arrangement	U	С	created exams
	of electrons in an atom.			/ Quiz
CO2	To discuss the chemical bonding,			Class test
	theories of chemical bonding and	U	F	/Assignment /
	predict molecular shapes using VSEPR			Quiz
	theory			

CO3	To Comprehend periodic properties, understand laws and the concept of the modern periodic table, and its implications	U	F	Class test /Assignment / Quiz	
CO4	To Master the principle of volumetric analysis, understand the separation of cations in qualitative analysis	U	С	Class test /Assignment / Quiz	
CO5	To Grasp the importance of green chemistry, its principles and applications, including alternative energy sources	U	F	Class test /Assignment / Quiz	
CO6	To Perform different titrations and execute open-ended experiments safely and effectively	Ар	Р	Lab work	
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 				

Module	Unit	Content	Hrs	Mark
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations,		
		Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ ⁺ , SO ₄ ²⁻	2	
	7	Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	

	8	Molecular Orbital theory: LCAO – Electronic		
	Ŭ	configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation	2	
		of bond order and its applications.(Bond length and		
		bond strength), Comparison of VB and MO theories		
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves, X-	0	10
		ray studies of Henrry Mosley, Mosleys periodic law -	2	
п		Modern periodic law – Long form periodic table.	2	
Π	10	Periodicity in properties: Atomic and ionic radii,		
Ш	10	Ionization enthalpy - Electron affinity (electron gain	3	
		enthalpy) – Electronegativity, valency, Oxidation number	5	
		(Representative element), metallic and non-metallic		
		character, inert pair effect,	15	34
	11	Analytical Chemistry		34
	11	Atomic mass - Molecular mass - Mole concept – Molar	2	
		volume - Oxidation and reduction – Equivalent mass.		
	12	Methods of expressing concentration: Molality,	2	
		molarity, normality, ppm, and mole fraction.		
	13	Dilution formula, Theory of volumetric analysis – Acid-	3	
		base, redox, and complexometric titrations :		
III	14	acid-base, redox, and complexometric indicators.	2	
		Double burette method of titration: Principle and		
		advantages.	_	
	15	Principles in the separation of cations in qualitative	2	
		analysis		
	16	Common ion effect and solubility product and its	2	
		applications in qualitative analysis –		
	17	Microanalysis and its advantages. Accuracy &	2	
		Precision (mention only).		
		Green Chemistry	10	20
	18	Introduction- Definition of green Chemistry, need of	3	
		green chemistry, Twelve principles of Green		
		Chemistry with their explanations .		
	19	Applications of green chemistry in daily life. Green	2	
		solvents- supercritical fluids, water as a solvent for		
IV		organic reactions, ionic liquids (Brief explanation with		
		example).		
	20	Alternative sources of energy: use of microwaves and	2	
		ultrasonic energy.		
	21	Strengthening/ development of analytical techniques		
		to prevent and minimize the generation of hazardous	2	
	1	substances in chemical processes.		

	22	Selection of starting materials; avoidance of		
		unnecessary derivatization.	1	
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		
		General Instructions		
		For weighing electronic balance must be used. For		
		titrations, double burette titration method should be used.		
		Standard solution must be prepared by the student. Use a		
		safety coat, gloves, shoes and goggles in the laboratory.		
		A minimum of 7 experiments must be done. Out of the		
		seven experiments, one is to be open-ended which can be		
		selected by the teacher		
		Importance of lab safety – Burns, Eye accidents, Cuts,		
		gas poisoning, Electric shocks, Treatment of fires,		
		Precautions and preventive measures.		
		Weighing using electronic balance, Preparation of		
		standard solutions.		
		Neutralization Titrations		
		1. Strong acid – strong base.		
	Ι	2. Strong acid – weak base.		
		3. Weak acid – strong base.		
		Redox Titrations - Permanganometry:		
		4. Estimation of oxalic acid.		
	II	5. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt		
		Redox Titrations - Dichrometry		
		6. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt		
		using internal indicator.		
		7. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt using		
		external indicator.		
		Redox Titrations - Iodimetry and Iodometry:		
v		8. Estimation of iodine.		
•		9. Estimation of copper		
		Open-ended experiments - Suggestions		
		Iodometry: Estimation of chromium.		
	III	Determination of acetic acid content in vinegar by		
		titration with NaOH.		
		Determination of alkali content in antacid tablets by		
		titration with HCl.		
		Determination of available chlorine in bleaching powder.		

References

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.

- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. V. K. Ahluwaliya, Green Chemistry, Narosa Publishing House, New Delhi, 2011.
- 8. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 9. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996

							1	1					
	PSO	PSO	PSO	PSO	PSO	PSO	PO						
	1	2	3	4	5	6	1	2	3	4	5	6	7
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Mapping of COs with PSOs and Pos

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6		\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme **B.Sc Chemistry** Course Title **BASIC INORGANIC CHEMISTRY AND METALLURGY** Type of Course **MINOR** Semester I 100-199 Academic Level **Course Details** Credit Lecture Tutorial Practical **Total Hours** per week per week per week 4 75 2 3 _ Concept of atom and molecule **Pre-requisites** Constituents of the atom, Rutherford's model of the atom. Periodic table and classification of elements to different blocks. Basic knowledge of qualitative and quantitative analysis Titration and use of indicators **Course Summary** This course is intended to provide basic knowledge in inorganic chemistry and nanochemistry. The student gets an understanding of the Bohr model of the atom and the modern quantum mechanical model of the atom through the first module of this course. Different types of chemical bonding are also included in the first module. General properties of the atom and the variation of these properties in the periodic table are also discussed in this course. Basic principles of analytical chemistry are included in the third module of this course which includes acidbase titration, redox titration, complexometric titration, and mixture analysis. This course also tries to explore processes in metallurgy including extraction of metals and alloy formation. To master the laboratory skills acid-base titration, and redox titration experiments are incorporated into this course structure.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
		Level	Category#	1 0015 useu
CO1	To Understand the structure of atoms			Instructor-
	and rules regarding the arrangement	U	С	created exams
	of electrons in an atom.			/ Quiz
CO2	To discuss the chemical bonding,			Class test
	theories of chemical bonding and	U	F	/Assignment /
	predict molecular shapes using VSEPR			Quiz
	theory			

CO3	To Comprehend periodic properties, understand laws and the concept of the modern periodic table, and its implications	U	F	Class test /Assignment / Quiz	
CO4	To Master the principle of volumetric analysis, understand the separation of cations in qualitative analysis	U	С	Class test /Assignment / Quiz	
CO5	To Comprehend the process in metallurgy including extraction of metals and alloy formation	U	F	Class test /Assignment / Quiz	
CO6	To Perform different titrations and execute open-ended experiments safely and effectively	Ap	Р	Lab work	
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 				

Module	Unit	Content	Hrs	Marks
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations, Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ ⁺ , SO ₄ ²⁻	2	
	7	Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	
	8	Molecular Orbital theory: LCAO – Electronic configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation of	2	

		bond order and its applications.(Bond length and bond		
		strength), Comparison of VB and MO theories		
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves, X-		
		ray studies of Henrry Mosley, Mosleys periodic law -	2	
		Modern periodic law – Long form periodic table.		
П	10	Periodicity in properties: Atomic and ionic radii, Ionization		
		enthalpy - Electron affinity (electron gain enthalpy) -	3	
		Electronegativity, valency, Oxidation number		
		(Representative element), metallic and non-metallic		
		character, inert pair effect,		
		Analytical Chemistry	15	34
III	11	Atomic mass - Molecular mass - Mole concept – Molar	2	
		volume - Oxidation and reduction – Equivalent mass.		
	12	Methods of expressing concentration: Molality,	2	
		molarity, normality, ppm, and mole fraction.		
	13	Dilution formula, Theory of volumetric analysis – Acid-	3	
		base, redox, and complexometric titrations :		
	14	acid-base, redox, and complexometric indicators.	2	
		Double burette method of titration: Principle and		
	15	advantages.	2	
	15	Principles in the separation of cations in qualitative analysis	2	
	16	Common ion effect and solubility product and its	2	
	10	applications in qualitative analysis –	2	
	17	Microanalysis and its advantages. Accuracy & Precision	2	
	1,	(mention only).	-	
IV		Metallurgy	10	20
	18	Ores and minerals, Concentration of ores – Calcination and	2	
	10	roasting – Reduction to free metal.	-	
	19	Electrometallurgy – Hydrometallurgy. Refining of metals:	2	
		Electrolytic refining, zone refining	_	
	20	Extractive metallurgy of Al, Fe	2	
	21	Alloys: Definition – Composition and uses of German		
	21	silver, brass, bronze, gunmetal and alnico. Steel: Open	2	
		hearth process (brief description only)	-	
	22	Classification of steel – Composition and uses of stainless		
		steels, and applications of industrially important stainless	2	
		steel types- (AISI Grade mention only)		
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		

		General Instructions	
		For weighing electronic balance must be used. For	
		titrations, double burette titration method should be used.	
		Standard solution must be prepared by the student. Use a	
		safety coat, gloves, shoes and goggles in the laboratory. A	
		minimum of 7 experiments must be done. Out of the seven	
		experiments, one is to be open-ended which can be	
		selected by the teacher	
		Importance of lab safety – Burns, Eye accidents, Cuts, gas	
		poisoning, Electric shocks, Treatment of fires, Precautions	
		and preventive measures.	
		Weighing using electronic balance, Preparation of	
		standard solutions.	
		Neutralization Titrations	
		1. Strong acid – strong base.	
	Ι	2. Strong acid – weak base.	
		3. Weak acid – strong base.	
		Daday Titustiang Dawn on som on stary	
		Redox Titrations - Permanganometry: 4. Estimation of oxalic acid.	
		 Estimation of oxane acid. Estimation of Fe₂₊/FeSO4.7H₂O/Mohr's salt 	
V	II	5. Estimation of 1 62+/1 6504./1120/1410111 5 suit	
		Redox Titrations - Dichrometry	
		6. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt using	
		internal indicator.	
		7. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt using	
		external indicator.	
		Redox Titrations - Iodimetry and Iodometry:	
		8. Estimation of iodine.	
		9. Estimation of copper	
		Open-ended experiments - Suggestions	
		Iodometry: Estimation of chromium.	
	III	Determination of acetic acid content in vinegar by titration	
		with NaOH.	
		Determination of alkali content in antacid tablets by	
		titration with HCl.	
		Determination of available chlorine in bleaching powder.	

References

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.

- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. A. Cottrel, An introduction to metallurgy, 2nd Edn., University press, 1990.
- 8. Jonathan Beddoes, J. Gordon Parr, *Introduction to stainless steels*, 3rd Edn., ASM International, 1999.
- 9. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

Mapping of COs with PSOs and POs

	PSO	PSO	PSO	PSO	PSO	PSO	PO	PO	PO	РО	PO	PO	PO
	1	2	3	4	5	6	1	2	3	4	5	6	7
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6		\checkmark	1	

Mapping of COs to Assessment Rubrics

BSc CHEMISTRY

Programme	B.Sc Chemistry									
Course Title	BASIC INORGANIC AND NUCLEAR CHEMISTRY									
Type of Course	MINOR									
Semester	Ι									
Academic Level	100-199									
Course Details	Credit	Credit Lecture Tutorial Practical Total Hours								
		per week	per week	per week						
	4	3	-	2	75					
	Concept of atom and	molecule								
Pre-requisites	Constituents of the at	om, Rutherfo	ord's model o	of the atom.						
	Periodic table and cla	ssification of	f elements to	different bloc	ks,					
	Basic knowledge of c	qualitative an	d quantitative	e analysis						
	Titration and use of in	ndicators								
Course Summary	This course is intende	ed to provide	e basic knowl	edge in inorg	anic chemistry and					
	nanochemistry. The s	tudent gets a	n understandi	ng of the Boh	r model of the atom					
	and the modern quant	um mechani	cal model of t	he atom throu	igh the first module					
	of this course. Different	ent types of c	hemical bone	ding are also i	ncluded in the first					
	module. General pro	perties of the	e atom and th	e variation of	these properties in					
	the periodic table are	also discusse	ed in this cour	rse. Basic prin	ciples of analytical					
	chemistry are include	ed in the thir	d module of	this course wl	hich includes acid-					
	base titration, redox	titration, con	nplexometric	titration, and	d mixture analysis.					
	This course also tries	s to examine	e nuclear che	emistry, the N	N/P ratio, and the					
	application of radio	active isotop	oes. To maste	er the laborate	ory skills acid-base					
	titration, and redox	titration exp	periments are	e incorporated	d into this course					
	structure.									

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	To Understand the structure of atoms			Instructor-
	and rules regarding the arrangement	U	С	created exams
	of electrons in an atom.			/ Quiz
CO2	To discuss the chemical bonding,			Class test
	theories of chemical bonding and	U	F	/Assignment /
	predict molecular shapes using VSEPR			Quiz
	theory			

CO3	To Comprehend periodic properties, understand laws and the concept of the modern periodic table, and its implications	U	F	Class test /Assignment / Quiz		
CO4	To Master the principle of volumetric analysis, understand the separation of cations in qualitative analysis	U	С	Class test /Assignment / Quiz		
CO5	To Examine nuclear chemistry, the N/P ratio and the application of radioactive isotopes	U	F	Class test /Assignment / Quiz		
CO6	To Perform different titrations and execute open-ended experiments safely and effectively	Ap	Р	Lab work		
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Module	Unit	Content	Hrs	Mark
		Atomic structure and Chemical Bonding	15	34
	1	2		
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ ⁺ , SO ₄ ²⁻	2	
	 Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP² (ethylene), SP³ (CH₄), SP³d (PCl₅), SP³d² (SF₆) 		2	
	8	Molecular Orbital theory: LCAO – Electronic configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation	2	

		of bond order and its applications.(Bond length and bond strength), Comparison of VB and MO theories		
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves, X- ray studies of Henrry Mosley, Mosleys periodic law - Modern periodic law – Long form periodic table.	2	
Π	10	Periodicity in properties: Atomic and ionic radii, Ionization enthalpy - Electron affinity (electron gain enthalpy) – Electronegativity, valency, Oxidation number (Representative element), metallic and non-metallic character, inert pair effect,	3	
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept – Molar volume - Oxidation and reduction – Equivalent mass.	2	
	12	Methods of expressing concentration: Molality, molarity, normality, ppm, and mole fraction.	2	
	13	Dilution formula, Theory of volumetric analysis – Acid- base, redox, and complexometric titrations :	3	
III	14	acid-base, redox, and complexometric indicators. Double burette method of titration: Principle and advantages.	2	
	15	Principles in the separation of cations in qualitative analysis	2	
	16	Common ion effect and solubility product and its applications in qualitative analysis –	2	
	17	Microanalysis and its advantages. Accuracy & Precision (mention only).	2	
		Nuclear Chemistry	10	20
	18	Nuclear stability – N/P ratio – Packing fraction – Mass defect – Binding energy	2	
	19	Nuclear fission - Atom bomb – Nuclear fusion – Hydrogen bomb.	1	
IV	20	Nuclear forces - Exchange theory and liquid drop model - Nuclear reactors. Decay series – group displacement law	2	
	21	Isotopes, Separation of isotopes by gaseous diffusion method and thermal diffusion method	2	
	22	Application of radioactive isotopes – ¹⁴ C dating – Rock dating – Isotopes as tracers – Study of reaction mechanism (ester hydrolysis) – Radio diagnosis and radiotherapy	3	
		Basic Inorganic Chemistry Practical: Acid-Base titrations and Redox titrations	30	
		General Instructions		

		For weighing electronic balance must be used. For	
		titrations, double burette titration method should be used.	
		Standard solution must be prepared by the student. Use	
		safety coat, gloves, shoes and goggles in the laboratory.	
		A minimum of 7 experiments must be done. Out of the	
		seven experiments, one is to be open-ended which can be	
		selected by the teacher	
		Importance of lab safety – Burns, Eye accidents, Cuts,	
		gas poisoning, Electric shocks, Treatment of fires,	
		Precautions and preventive measures.	
		Weighing using electronic balance, Preparation of	
		standard solutions.	
		Neutralization Titrations	
		1. Strong acid – strong base.	
	Ι	2. Strong acid – weak base.	
	-	3. Weak acid – strong base.	
		Redox Titrations - Permanganometry:	
V		4. Estimation of oxalic acid.	
	II	5. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt	
		Redox Titrations - Dichrometry	
		6. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt	
		using internal indicator.	
		 7. Estimation of Fe₂₊/FeSO₄.7H₂O/Mohr's salt using 	
		external indicator.	
		Redox Titrations - Iodimetry and Iodometry:	
		8. Estimation of iodine.	
		9. Estimation of copper	
		Open-ended experiments - Suggestions	
		Iodometry: Estimation of chromium.	
	TTT	Determination of acetic acid content in vinegar by	
	III	titration with NaOH.	
		Determination of alkali content in antacid tablets by	
		titration with HCl.	
		Determination of available chlorine in bleaching powder.	

References

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 5. W. U. Malik, G. D. Tuli, R. D. Madan, Selected Topics in Inorganic Chemistry, S. Chand

and Co., New Delhi, 2010.

- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, *Inorganic Chemistry*, 5th Edn., Pearson, 2009.
- 8. H. J. Arnikar, Essentials of Nuclear Chemistry, 4th Edn., New Age International (P) Ltd.,
- 9. New Delhi, 1995.J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook* of *Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

	0												
	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	O1	O2	O3	O4	O5	O6							
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Mapping of COs with PSOs and POs

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		~
CO2	✓	\checkmark		✓
CO3	\checkmark	\checkmark		~
CO4	\checkmark	\checkmark		~
CO5	✓	\checkmark		✓
CO6		1	1	

BSc CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	COORDINATION CHEMISTRY						
Type of Course	MINOR						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	3	-	2	75		
Pre-requisites	Classification of elem f block elements base General idea about tr Concept of coordinat Concept of covalent b Theoretical and pract	ed on electron ansition and a e bond, valer bond, and org	nic configuration inner transition cy. ganic compou	tion. on elements, and.			
Course Summary	Theoretical and practical knowledge about volumetric analysis This course explains the characteristics of s, p, d and f block elements and familiarises some of the important compounds of main group elements. It also gives insight into coordination compounds and various theories to explain the bonding in coordination compounds. It covers the practical application of complex formation in quantitative analysis A brief discussion of Organometallic compounds, complexometric titration, preparation of complex compounds and colourimetry is also included in this course.						

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	To Elucidate the trends in physical and			Instructor-
	chemical properties of s and p block	U	F	created exams
	elements			/ Quiz
CO2	To Evaluate the general properties of			Class test
	transition metals and to distinguish between	U	F	/Assignment /
	lanthanides and actinides			Quiz
CO3	To Unlock the Complexity of Coordination			Class test
	Compounds: Structures, Properties, and	U	F	/Assignment /
	Applications			Quiz
CO4	To demonstrate different theories to explain	U	С	Class test
	the formation of coordination compounds			/Assignment /
				Quiz

CO5	To explore the characteristics of	U	F	Class test				
	organometallic compounds			/Assignment /				
				Quiz				
CO6	To Perform complexometric titrations,							
	colourimetry experiments and	Ap	Р	Lab Work				
	preparation of complex compounds.							
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)								
Metao	Metacognitive Knowledge (M)							

Module	Unit	Content	Hrs	Mark
		s & p BLOCK ELEMENTS	15	33
	1	s block elements - General properties: Ionization	2	
		Energy, Flame coloration, photoelectric effect,		
		metallic character, hydration energy.		
	2	p-block elements: comparative study- halides,	2	
		sulphates, carbonates and bicarbonates (solubility		
		and thermal stability).		
	3	Oxidation number and inert pair effect, Comparison	1	
т		of Lewis acidity of boron halides.		
Ι	4	Preparation, properties, structure and uses of	3	
		Diborane, Boric acid, Borazine and Boron nitride.		
		Structure and bonding of oxides of N (N ₂ O, NO, NO ₂ , NO, NO ₂		
	5	N ₂ O ₄) and S (SO ₂ and SO ₃) Oxo acids of P (H ₃ PO ₂ ,H ₃ PO ₃ , H ₃ PO ₄) and Cl (HOCl,	2	
	5	HOCl ₂ , HOCl ₃ ,HOCl ₄) (structure and acid strength).	2	
	6	Colour and bond dissociation energy of halogens.	2	
	0	Interhalogen compounds: Preparation, properties	_	
		uses and structure (One example each- ClF, ClF ₃ ,		
		ClF ₅ and IF ₇), Electropositive character of iodine		
	7	Pseudo halogen: Comparison of pseudo halogen	3	
		(Cyanogen as example) and halogens. structure of		
		poly halide ions (ICl ₂ -, ICl ₄ - and I ₅ -). Noble gases:		
		Isolation of noble gases: Dewar's method-		
		Separation by charcoal adsorption method, Uses of		
		He, and Ne		
		TRANSITION AND INNER TRANSITION	8	17
		ELEMENTS		
	8	Transition Metals: General characteristics: Metallic	2	
		character, oxidation states, size, density, melting		

		point, boiling point. ionization energy, colour,		
		magnetic properties, catalytic properties		
Π	9	non-stoichiometric compounds, complex formation	2	
		and alloy formation. Difference between first row		
		and other two rows.		
	10	Lanthanides: Electronic configuration and general	2	
	_	characteristics. Occurrence of lanthanides –		
		Importance of beach sands of Kerala – Isolation of		
		lanthanides from monazite sand – Separation by ion		
		exchange method.		
	11	Lanthanide contraction: Causes and consequences.	2	
		Industrial importance of lanthanides. Actinides:		
		Electronic configuration and general characteristics -		
		Comparison with lanthanides [Mention only].		
		COORDINATION COMPOUNDS	15	34
	12	Double salt and complex, ligand, type of ligands:	2	
		(mono, bi, tri, tetra, hexa, ambidentate, chelate and		
		macrocyclic ligands) coordination number,		
	13	Isomerism - structural and stereoisomerism, IUPAC	2	
		Nomenclature of complexes,		
	14	Postulates of Werner's theory, EAN rule, application	2	
		of co-ordination complexes in quantitative and		
		qualitative analysis.		
	15	Theories of bonding, VBT (valence bond theory) ,	2	
		geometry of co-ordination numbers 4 and 6,		
	16	Limitations of VBT, Crystal field Theory: CFSE of low	2	
III		spin and high spin octahedral complexes, Factors		
		affecting crystal field splitting.		
	17	Spectrochemical series, Crystal field splitting of d	2	
		orbitals in Tetragonal and Square planar Complexes.		
	18	Magnetism (spin only magnetic moment) and colour	1	
		(d-d transition),		
	19	Distorted octahedral complexes, merits and	2	
		demerits of CFT.		
		Organometallic Compounds	7	14
	20	Definition - Classification based on the nature of	2	
IV		metal-carbon bond, Zeise's salt. 18-electron rule.		
	21	Metal carbonyls - Mononuclear and Polynuclear	2	
		carbonyls of Fe, Co and Ni (structure only) – Bonding		
		in metal carbonyls.		

	22	Ferrocene: Preparation, properties and bonding	3	
	22	(VBT only). Catalysis: Zeigler Natta catalyst in the	5	
		polymerization and Wilkinson catalyst in the		
		hydrogenation of alkene.		
		PRACTICAL :	30	
		Complexometric titrations and Inorganic Preparations		
		A minimum of 7 experiments must be done. Out of the		
		seven experiments, one is to be open-ended which		
		can be selected by the teacher		
		1. Estimation of zinc.		
	Ι	2. Estimation of magnesium.		
		3. Estimation of calcium.		
		4. Determination of total hardness of water.		
		Preparation of complex compounds		
	II	5. Preparation of tetramminecopper(II) sulphate.		
		6. Preparation of Nickel (II) dimethylglyoxime		
V		7. Preparation of trithioureacopper(I) sulphate		
v		Colorimetry		
		8. Verification of Beer-Lambert law for KMnO4 &		
	III	determination of concentration of the given		
		solution.		
		9. Estimation of iron.		
		10. Estimation of chromium.		
	IV	Open-ended experiments - Suggestions		
		1. Preparation of double salt/Complex compounds.		
		2. Determination of alkali content in antacid tablets by		
		titration with HCl.		
		3. Determination of available chlorine in bleaching		
		powder.		
		4. Analysis of Ores		

References

- 1. J. D. Lee, Concise Inorganic Chemistry, 5th Edn., Wiley India Pvt. Ltd., 2008.
- 2. B. R. Puri, L. R. Sharma, K. C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, New Delhi, 2010.
- 3. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, *Inorganic Chemistry*, Pearson, 2006.
- 4. F. A. Cotton, G. Wilkinson, *Advanced Inorganic Chemistry*, 6th Edn., John Wiley, New York. 1999.
- 5. D. F. Shriver, P. W. Atkins, *Inorganic Chemistry*, 3rd Edn., Oxford University Press, 2009.
- 6. R. Gopalan, V. Ramalingam, *Concise Coordination Chemistry*, 1st Edn., Vikas Publishing House, New Delhi, 2001.
- 7. P. Powell, *Principles of Organometallic Compounds*, 2nd Edn., Chapman and Hall, London, 1988.

- 8. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 9. D. N. Bajpai, O. P. Pandey, S. Giri, *Practical Chemistry; For I, II & III B. Sc. Students*, S. Chand & Company Ltd., New Delhi, 2012.

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	O5	06							
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	2				2		1				1		
3													
CO	2				2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Mapping of COs with PSOs and POs

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	✓		✓
CO3	\checkmark	\checkmark		✓
CO4	\checkmark	\checkmark		✓
CO5	\checkmark	\checkmark		✓
CO6		\checkmark	1	

BSc CHEMISTRY

Programme	B.Sc Chemistry							
Course Title	QUANTUM MECHANICS, SOLID STATE AND GASEOUS STATE							
Type of Course	MINOR							
Semester	II							
Academic Level	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	3	-	2	75			
Pre-requisites	1. Basic idea the st	ructure of at	om					
	2. Fundamentals of	f states of ma	atter					
	3. Basic knowledge	e in analytic	al principles					
Course Summary	1. This course	e aims to ir	stroduce the	failures of cl	lassical theories in			
	explaining	many experi	ments and th	e emergence	of quantum theory.			
	2. This course	also aims to 1	ealise the the	eories of differ	rent states of			
	matter and	their implica	tions.					
	3. This course	3. This course also aims to develop proficiency in qualitative analysis						
	and to fami	liarize physi	cal chemistr	y experiments				

СО	CO Statement	Cognitiv e Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the importance and the impact of quantum revolution in science.	U	F	Instructor-created exams / Quiz /Assignment
CO2	To evaluate the properties of solids	E	С	Instructor-created exams / Quiz /Assignment
CO3	To analyse the behaviour of gases	An	C	Instructor-created exams / Quiz /Assignment
CO4	To understand the properties of gaseous state and how it links to thermodynamic systems.	U	C	Instructor-created exams / Quiz /Assignment
CO5	To perform the cation analysis on a provided mixture containing two cations.	An	Р	Lab work

CO6	To enable the students to determine	Ар	Р	Lab work				
	the physical properties (physical							
	constants).							
* - Remer	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowledge (M)								

Module	Unit	Content	Hrs	Marks
Ι		Introduction to Quantum mechanics	15	32
	1	Postulates of quantum mechanics – derivation of time-	2	
		independent Schrodinger equation		
	2	Particle in one dimensional box problem- Schrodinger	3	
		equation, derivation for expression of energy, quantisation		
		of energy levels, HOMO-LUMO transition in 1,3-butadiene		
		Particle in three dimensional box (no derivation)- Concept		
		of degeneracy of energy levels		
	3	Harmonic oscillator model, Schrodinger equation and		
		Energy levels (basic idea only, no derivation)	1	
	4	Spherical polar coordinates and Rigid rotor model (no		
		derivation, basic idea only), Expression for energy,	2	
		Spherical harmonics, Angular momentum		
	5	Quantum mechanics of Hydrogen-like atoms - Hamiltonian	2	
		operator of H-like systems, The Schrodinger equation in	3	
		spherical polar coordinates, separation of variables		
	6	Wave functions or atomic orbitals, radial and angular parts	2	
		of atomic orbitals. Quantum numbers (n, l, m).	2	
	7	The Stern - Gerlach experiment and the concept of electron	2	
		spin, spin quantum number.	2	
II		Solid state	10	22
	8	Classification of solids: Amorphous, Crystalline, Lattice	2	
		points, lattice energy (general idea), unit cell, seven crystal		
		systems.		
	9	Weiss and Miller indices - Bravais lattices, Close packing	1	
		in crystals, examples of simple cubic, bcc and fcc lattices,		
	10	Explanation of electrical properties using concepts of	2	
		bands, Explanation of conductors, semiconductors and		
		insulators, Super conductors		
	11	Magnetic Properties: classification - diamagnetic,	3	
		paramagnetic, antiferromagnetic, ferro and ferrimagnetic,		
		permanent and temporary magnets.		
	12	Defects in crystals – stoichiometric and non-stoichiometric	2	
		defects (Basic ideas only).		
III		Gaseous state - I	10	22

	13	Characteristics of gases	1	
	13	Postulates of kinetic theory of gases	2	
	15	Maxwell's distribution of molecular velocities – Root mean	3	
	15	square, average and most probable velocities.	5	
	16	Collision number – Mean free path – Collision diameter	1	
		=		
	17	Viscosity of gases, including their temperature and pressure dependence,	1	
	18	Relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure.	2	
IV		Gaseous state -II	10	22
1 1	19	Behaviour of real gases - Deviation from ideal behaviour –	3	
	19	Compressibility factor	5	
	20	Causes of deviation from ideal behaviour - van der Waals	4	
	20	equation of state (derivation not required) – Expression of	4	
		van der Waals equation in virial form and calculation of		
	21	Boyle temperature	1	
	21	PV isotherms of real gases – Continuity of states – Isotherm	1	
	- 22	of van der Waals equation	2	
	22	Critical phenomena (basic idea only) – Critical constants	2	
		and their determination (derivation not required) –		
		Relationship between critical constants and van der Waals		
T 7		constants.	20	
V		Practical	30	
		mum of seven experiments must be done. Out of the seven		
	-	nents, one is to be open-ended which can be selected by the		
	teacher			
	1	Inorganic Qualitative Analysis (semi – micro analysis)	25	
		• Reactions of Cations: Study of the reactions of the		
		following cations with a view of their identification		
		and confirmation. NH_4^+ , Pb^{2+} , Cu^{2+} , Cd^{2+} , Al^{3+} ,		
		Ni^{2+} , Co^{2+} , Mn^{2+} , Zn^{2+} , Ba^{2+} , Sr^{2+} , Ca^{2+} , and Mg^{2+}		
		• Systematic qualitative analysis of a solution		
		containing any two cations from the above list.		
		(Minimum 6 mixtures)	_	
	2	Open ended experiments– Physical chemistry experiments.	5	
		(Any one experiment)		
		Suggestions		
		Determination of Physical Constants [Determination of		
		colligative properties, Determination of viscosity of a		
		binary liquid solution (Glycerol-water system)		
		Refractometry experiments etc]		

Reference Books

1. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press, 2006.

- 2. B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017.
- 4. G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- Anthony R. West, Solid State Chemistry and its Applications, 2nd Edn., Wiley-Blackwell, 2014.
- L. V. Azaroff, Introduction to Solids, Tata McGraw Hill Publishing Company, New Delhi, 1960.
- J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- 8. V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- 9. A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 10. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	O1	O2	O3	O4	O5	O6							
CO 1	2				2		1						
CO 2	2				2		1						
CO 3	2				2		1						
CO 4	2				2		1						
CO 5			2		2		1				1		
CO 6			2		2		1				1		

Mapping of COs with PSOs and POs

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		~
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	~	\checkmark		~
CO5	\checkmark	\checkmark	\checkmark	
CO6	\checkmark	\checkmark	\checkmark	

BSc CHEMISTRY

Programme	B.Sc Chemistry							
Course Title	LIQUID STATE,	LIQUID STATE, GASEOUS STATE AND ELECTROCHEMISTRY						
Type of Course	MINOR							
Semester	II							
Academic Level	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	3	-	2	75			
Pre-requisites	1. Fundamentals of	f Gaseous an	d Liquid stat	tes of matter				
	2. Basic principles	of Electroch	emistry					
	3. Basic knowledge	e in analytic	al principles					
Course Summary	1. This cours	e provides	the students	s a thorough	knowledge about			
	gaseous and	d liquid state	s of matter a	nd the continu	uity between them.			
	2. This course	2. This course aims to impart an idea about electrochemistry						
	3. This course	3. This course also aims to develop proficiency in qualitative analysis and						
	to familiari	ze physical o	chemistry exp	periments				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To apply the postulates of kinetic theory of gases.	Ар	F	Instructor-created exams / Quiz /Assignment
CO2	To describe the properties of liquids.	Е	С	Instructor-created exams / Quiz /Assignment
CO3	To analyse the behaviour of gases and liquids	An	С	Instructor-created exams / Quiz /Assignment
CO4	To illustrate the basic concepts of electrochemistry and its applications	U	С	Instructor-created exams / Quiz /Assignment
CO5	To perform the cation analysis on a provided mixture containing two cations.	An	Р	Lab work

CO6	To enable the students to determine		Р	Lab work		
	the physical properties (physical					
	constants).					
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)					
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive					
Know	Knowledge (M)					

Module	Unit	Content	Hrs (75)	Marks
Ι		15	34	
	1	Introduction – Definition and characteristics of liquids - Vapour pressure, surface tension and viscosity - Explanation of these properties on the basis of intermolecular attraction.	4	
	2	Kinds of solutions –Solubility of gases in liquids – Henry's law and its applications	2	
	3	Raoult's law – Ideal and non-ideal solutions – Dilute solutions.	2	
	4	Colligative properties – Qualitative treatment of colligative properties – Relative lowering of vapour pressure – Elevation of boiling point,– Depression in freezing point – Osmotic pressure – Reverse osmosis and its applications	3	
	5	 Application of colligative properties in finding molecular weights (thermodynamic derivation not needed) – Abnormal molecular mass – Van't Hoff factor 	2	
	6	Introduction to liquid crystal phases. Types of liquid crystals: nematic, smectic, cholesteric.	1	
	7	Applications of liquid crystals.	1	
II		Gaseous State - I	10	20
	8	Characteristics of gases	1	
	9	Postulates of kinetic theory of gases	2	
	10	Maxwell's distribution of molecular velocities – Root mean square, average and most probable velocities.	3	
	11	Collision number – Mean free path – Collision diameter	1	
	12	Viscosity of gases, including their temperature and pressure dependence,	1	

	13	Relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure.	2	
III		Gaseous State - II	10	22
	14	Behaviour of real gases - Deviation from ideal behaviour – Compressibility factor	3	
	15	Causes of deviation from ideal behaviour - van der Waals equation of state (derivation not required) – Expression of van der Waals equation in virial form and calculation of Boyle temperature	4	
	16	PV isotherms of real gases – Continuity of states – Isotherm of van der Waals equation	1	
	17	Critical phenomena (basic idea only) – Critical constants and their determination (derivation not required) – Relationship between critical constants and van der Waals constants.	2	
IV		10	22	
	18	Specific conductance, equivalent conductance and molar conductance	2	
	19	Variation of conductance with dilution - Kohlrausch's law - Degree of ionization of weak electrolytes	2	
	20	Application of conductance measurements – Conductometric titrations.	1	
	21	Galvanic cells – emf of cell and electrode potentials - IUPACsignconventionelectrodes – Standard Hydrogen electrode – Calomel electrode -Standard electrode potential - Nernst equation	2	
	22	H ₂ -O ₂ fuel cell. Ostwald's dilution law – Buffer solutions – Buffer action [acetic acid/sodium acetate & NH ₄ OH/NH ₄ Cl], applications of buffers.	3	
V		Practical	30	
		nimum of seven experiments must be done. Out of the seven iments, one is to be open-ended which can be selected by the er		
	1	 a) Inorganic Qualitative Analysis (semi – micro analysis) Reactions of Cations: Study of the reactions of the following cations with a view of their identification and 	25	

	 confirmation. NH4⁺, Pb²⁺, Cu²⁺, Cd²⁺, Al³⁺, Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, and Mg²⁺ Systematic qualitative analysis of a solution containing any two cations from the above list. (Minimum 6 mixtures) 		
2	 b) Open ended experiments– Physical chemistry experiments. (Any one experiment) Suggestions Determination of Physical Constants [Determination of colligative properties, Determination of viscosity of a binary liquid solution (Glycerol-water system) 	5	
	Refractometry experiments etc.]		

Reference Books

- 1. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press, 2006.
- B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017.
- 4. G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- S. Glasstone, Introduction to Electrochemistry, East-West Press Pvt. Ltd., New Delhi, 2007.
- J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- 8. A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 9. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	O5	06							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO			2		2		1				1		
5													
CO			2		2		1				1		
6													

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

	Internal Theory / Practical Exam			End Semester Examination
CO1	~	\checkmark		~
CO2	✓	\checkmark		✓
CO3	✓	\checkmark		~
CO4	✓	\checkmark		~
CO5	✓	\checkmark	1	
CO6	\checkmark	\checkmark	1	

BSc CHEMISTRY

Programme	B.Sc Chemistry	B.Sc Chemistry							
Course Title	PHYSICAL PROPERTIES OF SOLUTIONS, GASES AND								
	COLLOIDS								
Type of Course	MINOR								
Semester	II								
Academic Level	100 - 199	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
		per week	per week	per week					
	4	3	-	2	75				
Pre-requisites	1. Fundamentals of	f Gases and I	Liquids	· · · · · · · · · · · · · · · · · · ·					
	2. Colloids – Defin	ition and cla	ssification						
	3. Basic knowledge	e in analytic	al principles						
Course Summary	1. This course	provide the	students a th	orough know	ledge about various				
	properties of	of gases and	liquids						
	2. This course	e aims to dev	elop an idea	about the app	olications of				
	colloids								
	3. This course	also aims to c	levelop profi	ciency in qua	litative analysis and				
	to familiari	ze physical o	chemistry ex-	periments					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO 1	To explain the characteristics of gases.	U	F	Instructor-created exams / Quiz /Assignment
CO 2	To analyse the intermolecular attractions and explain the properties of liquids	An	С	Instructor-created exams / Quiz /Assignment
CO 3	To evaluate the behaviour of solutions	E	С	Instructor-created exams / Quiz /Assignment
CO 4	To apply the theories of different states of matter and understand their implications.	Ар	F	Instructor-created exams / Quiz /Assignment

CO	To appreciate the importance of	U	С	Instructor-created				
5	colloids in chemistry			exams / Quiz				
				/Assignment				
CO	To perform qualitative analysis	Ap	Р	Lab work				
6	of cations and determine							
	physical constants							
* - R	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Meta	Metacognitive Knowledge (M)							

Module	Unit	Content	Hrs (75)	Marks
Ι		Solutions and Colligative Properties	15	32
	1	Introduction – Definition and characteristics of liquids - Vapour pressure, surface tension and viscosity - Explanation of these properties on the basis of intermolecular attraction.	4	
	2	Kinds of solutions –Solubility of gases in liquids – Henry's law and its applications	2	
	3	Raoult's law – Ideal and non-ideal solutions – Dilute solutions.	2	
	4	Colligative properties – Qualitative treatment of colligative properties – Relative lowering of vapour pressure – Elevation of boiling point,– Depression in freezing point – Osmotic pressure – Reverse osmosis and its applications	3	
	5	 Application of colligative properties in finding molecular weights (thermodynamic derivation not needed) – Abnormal molecular mass – Van't Hoff factor 	2	
	6	Introduction to liquid crystal phases. Types of liquid crystals: nematic, smectic, cholesteric.	1	
	7	Applications of liquid crystals.	1	
II		Properties of Gases	10	22
	8	Characteristics of gases	1	
	9	Postulates of kinetic theory of gases	2	
	10	Maxwell's distribution of molecular velocities – Root mean square, average and most probable velocities.	3	

	11	Collision number – Mean free path – Collision diameter	1	
	12	Viscosity of gases, including their temperature and pressure dependence,	1	
	13	Relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure.	2	
III		Ideal and Real Gases	10	22
	14	Behaviour of real gases - Deviation from ideal behaviour – Compressibility factor	3	
	15	Causes of deviation from ideal behaviour - van der Waals equation of state (derivation not required) – Expression of van der Waals equation in virial form and calculation of Boyle temperature	4	
	16	PV isotherms of real gases – Continuity of states – Isotherm of van der Waals equation	1	
	17	Critical phenomena (basic idea only) – Critical constants and their determination (derivation not required) – Relationship between critical constants and van der Waals constants.	2	
IV		Colloids	10	22
	18	True solution, colloidal solution and suspension. Classification of colloids: Lyophilic, lyophobic, macromolecular, multimolecular and associated colloids with examples.	2	
	19	Purification of colloids by electrodialysis and ultrafiltration	2	
	20	Properties of colloids: Brownian movement – Tyndall effect – Electrophoresis.	2	
	21	Origin of charge and stability of colloids – Coagulation -	2	
		Hardy Schulze rule – Protective colloids - Gold number. Emulsions.		
	22	-	2	
V	22	Emulsions. Applications of colloids: Delta formation, medicines,	2 30	

1	Inorganic Qualitative Analysis (semi – micro analysis)	25	
	 Reactions of Cations: Study of the reactions of the following cations with a view of their identification and confirmation. NH4⁺, Pb²⁺, Cu²⁺, Cd²⁺, Al³⁺, Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, and Mg²⁺ Systematic qualitative analysis of a solution containing any two cations from the above list. (Minimum 6 mixtures) 		
2	Open ended experiments– Physical chemistry experiments. (Any one experiment) Suggestions Determination of Physical Constants [Determination of colligative properties, Determination of viscosity of a binary liquid solution (Glycerol-water system)	5	
	Refractometry experiments etc.]		

Reference Books

- 1. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press, 2006.
- 2. B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017.
- 4. G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- 6. V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 8. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	O5	06							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO	2				2		1						
5													
CO			2		2		1				1		
6													

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		~
CO2	\checkmark	\checkmark		~
CO3	✓	\checkmark		✓
CO4	1	\checkmark		✓
CO5	✓	\checkmark		✓
CO6	✓	\checkmark	1	

BSc CHEMISTRY

Programme	B.Sc Chemistry								
Course Title	STATES OF MATTER AND NUCLEAR CHEMISTRY								
Type of Course	MINOR								
Semester	II								
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
		per week	per week	per week					
	4	3	-	2	75				
Pre-requisites	1. Fundamentals of	f Gaseous an	d Liquid stat	tes of matter					
	2. Basic idea about	nucleons							
	3. Basic knowledge	e in analytica	al principles						
Course Summary	1. This cours	e provides	the students	s a thorough	knowledge about				
	gaseous and liquid states of matter and the continuity between them.								
	2. This course aims to introduce the applications of nuclear chemistry								
	3. This course also aims to develop proficiency in qualitative analysis and								
	to familiari	ze physical c	chemistry ex	periments					

СО	CO Statement Cogn Lev		Knowledge Category#	Evaluation Tools used		
CO1	To understand the fundamental	U	F	Instructor-created		
	concepts and the properties of			exams / Quiz		
	gaseous state and how it relates to			/Assignment		
	thermodynamic systems.					
CO2	To understand the behaviour of	Е	С	Instructor-created		
	ideal and non-ideal solutions			exams / Quiz		
				/Assignment		
CO3	To analyse the properties of gases	An	С	Instructor-created		
	and liquids.			exams / Quiz		
				/Assignment		
CO4	To apply the theories of different	Ар	F	Instructor-created		
	states of matter and understand			exams / Quiz		
	their implications.			/Assignment		

CO5	To describe various processes in	U	С	Instructor-created				
	nuclear chemistry			exams / Quiz				
				/Assignment				
CO6	To analyse cations from a given	An	Р	Lab work				
	mixture and enable the students to							
	determine the physical constants.							
* - Rem	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowle	dge (M)							

Module	Unit	Content	Hrs (75)	Marks		
Ι		Gaseous State - I	10	22		
	1	Characteristics of gases	1			
	2	Postulates of kinetic theory of gases	2			
	3	Maxwell's distribution of molecular velocities – Root mean square, average and most probable velocities.	3			
	4	Collision number – Mean free path – Collision diameter	1			
	5	Viscosity of gases, including their temperature and pressure dependence,	1			
	6	Relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure.	2			
II		Gaseous State - II				
	7	Behaviour of real gases - Deviation from ideal behaviour - Compressibility factor	3			
	8	Causes of deviation from ideal behaviour - van der Waals equation of state (derivation not required) – Expression of van der Waals equation in virial form and calculation of Boyle temperature	4			
	9	PV isotherms of real gases – Continuity of states – Isotherm of van der Waals equation	1			
	10	Critical phenomena (basic idea only) – Critical constants and their determination (derivation not required) –	2			

		Relationship between critical constants and van der Waals constants.		
III		15	32	
	11	Introduction – Definition and characteristics of liquids - Vapour pressure, surface tension and viscosity - Explanation of these properties on the basis of intermolecular attraction.	4	
	12	Kinds of solutions –Solubility of gases in liquids – Henry's law and its applications	2	
	13	Raoult's law – Ideal and non-ideal solutions – Dilute solutions.	2	
	14	Colligative properties – Qualitative treatment of colligative properties – Relative lowering of vapor pressure – Elevation of boiling point,– Depression in freezing point – Osmotic pressure – Reverse osmosis and its applications	3	
	15	 Application of colligative properties in finding molecular weights (thermodynamic derivation not needed) – Abnormal molecular mass – Van't Hoff factor 	2	
	16	Introduction to liquid crystal phases. Types of liquid crystals: nematic, smectic, cholesteric.	1	
	17	Applications of liquid crystals.	1	
IV		Nuclear Chemistry	10	22
	18	Natural radioactivity – Modes of decay – Group displacement law.	2	
	19	Nuclear forces - n/p ratio - Nuclear stability - Mass Defect - Binding energy	2	
	10	Isotopes, isobars and isotones with examples. Nuclear fission - Atom bomb - Nuclear fusion – Hydrogen bomb	1	
	21	Nuclear reactors	1	
	22	Application of radioactive isotopes – ¹⁴ C dating, Rock dating, Isotopes as tracers, Radio diagnosis, Radiotherapy. Problems	4	
V		Practical	30	

sev	A minimum of seven experiments must be done. Out of the seven experiments, one is to be open-ended which can be selected by the teacher					
1	 a) Inorganic Qualitative Analysis (semi – micro analysis) Reactions of Cations: Study of the reactions of the following cations with a view of their identification and confirmation. NH4⁺, Pb²⁺, Cu^{2+,} Cd²⁺, Al³⁺, Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, and Mg²⁺ Systematic qualitative analysis of a solution containing any two cations from the above list. (Minimum 6 mixtures) 	25				
2	 b) Open ended experiments- Physical chemistry experiments. (Any one experiment) Suggestions Determination of Physical Constants [Determination of colligative properties, Determination of viscosity of a binary liquid solution (Glycerol-water system) Refractometry experiments etc.] 	5				

Reference Books

- 1. Atkins P. W. & Paula, J. de, Elements of Physical Chemistry, Oxford University Press, 6th Ed., (2006).
- 2. Puri, Sharma &Pathania, Principles of Physical Chemistry, Vishal Publishing Co, 47th Edn., 2017.
- Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017 G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- H. J. Arnikar, Essentials of Nuclear Chemistry, 4th Edn., New Age International (P) Ltd., New Delhi, 1995
- J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 8. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	05	06							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO	2				2		1						
5													
CO			2		2		1				1		
6													

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	✓	\checkmark		✓
CO3	✓	\checkmark		\checkmark
CO4	✓	\checkmark		✓
CO5	✓	✓		✓
CO6	✓	✓	1	

BSc CHEMISTRY

Programme	B.Sc Chemistry					
Course Title	SOLUTIONS AN	SOLUTIONS AND SURFACE CHEMISTRY				
Type of Course	MINOR					
Semester	II					
Academic Level	100 - 199					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites	1. Basic idea of sol	lutions				
	2. Colloids – Defin	nition and cla	ssification			
	3. Fundamentals of	f surface phe	nomena			
	4. Basic knowledge	e in analytic	al principles			
Course Summary	1. This course	provide the	students a th	orough knowl	ledge about various	
	properties of	of liquids				
	2. This course	e aims to imp	oart an idea a	bout importan	nce of colloids	
	3. This course	e aims to dev	elop the con	cept of adsorp	otion and	
	separation t	techniques				
	4. This course	also aims to o	levelop profi	ciency in qual	litative analysis	
	and to fami	liarize physi	cal chemistr	y experiments		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the fundamental concepts and the properties of liquids	U	F	Instructor-created exams / Quiz /Assignment
CO2	To evaluate the importance of colligative properties.	E	С	Instructor-created exams / Quiz /Assignment
CO3	To differentiate different types of colloids and explain their properties and applications.	U	С	Instructor-created exams / Quiz /Assignment
CO4	To appreciate the importance of surface phenomena in chemistry	U	С	Instructor-created exams / Quiz /Assignment

CO5	To perform the cation analysis on a provided mixture containing two cations.	An	Р	Lab work			
CO6	To enable the students to determine the	1	Р	Lab work			
	physical properties (physical constants).						
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Know	Knowledge (M)						

Module	Unit	Content	Hrs	Marks
Ι		Solutions	15	32
	1	Introduction – Definition and characteristics of liquids -	4	
		Vapour pressure, surface tension and viscosity - Explanation		
		of these properties on the basis of intermolecular attraction.		
	2	Kinds of solutions –Solubility of gases in liquids – Henry's law and its applications	2	
	3	Raoult's law – Ideal and non-ideal solutions – Dilute solutions.	2	
	4	Colligative properties - Qualitative treatment of colligative	3	
		properties – Relative lowering of vapour pressure – Elevation		
		of boiling point,- Depression in freezing point - Osmotic		
		pressure – Reverse osmosis and its applications		
	5	- Application of colligative properties in finding molecular	2	
		weights (thermodynamic derivation not needed) – Abnormal		
		molecular mass – Van't Hoff factor		
	6	Introduction to liquid crystal phases. Types of liquid crystals:	1	
		nematic, smectic, cholesteric.		
	7	Applications of liquid crystals.	1	
II	0	Colloids	10	22
	8	True solution, colloidal solution and suspension. Classification	2	
		of colloids: Lyophilic, lyophobic, macromolecular,		
		multimolecular and associated colloids with examples.		
	9	Purification of colloids by electrodialysis and ultrafiltration	2	
	10	Properties of colloids: Brownian movement – Tyndall effect –	2	
		Electrophoresis.		
	11	Origin of charge and stability of colloids – Coagulation - Hardy	2	
		Schulze rule – Protective colloids - Gold number. Emulsions.		
	12	Applications of colloids: Delta formation, medicines,	2	
		emulsification, cleaning action of detergents and soaps.		
III		Adsorption and Catalysis	10	22
	13	Adsorption, Physical and chemical adsorption, factors affecting	2	
		adsorption.		
	14	Adsorption isotherms: Freundlich and Langmuir isotherms	2	
		(derivation not required) –		
	15	Applications of adsorption.	1	

	16	Catalysis: Homogeneous and heterogenous catalysis – Theories of homogenous and heterogenous catalysis	3	
	17	Enzyme catalysis – Michaelis-Menten equation (derivation not required).	2	
IV		Separation Techniques	10	22
	18	Chromatography- Introduction - Adsorption and partition chromatography - Development of chromatogams: frontal, elution and displacement methods	2	
	19	Qualitative and quantitative aspects of principle and applications of column, thin layer, paper and gas chromatography	2	
	20	Rf value – Relative merits of different techniques	2	
	21	Solvent extraction: Classification, principle and efficiency of the technique.	2	
	22	Extraction of metal ions from aqueous solution,	2	
V		Practical	30	
		nimum of seven experiments must be done. Out of the seven ments, one is to be open-ended which can be selected by the pr		
	1	 Inorganic Qualitative Analysis (semi – micro analysis) Reactions of Cations: Study of the reactions of the following cations with a view of their identification and confirmation. NH4⁺, Pb²⁺, Cu²⁺, Cd²⁺, Al³⁺, Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, and Mg²⁺ Systematic qualitative analysis of a solution containing any two cations from the above list. (Minimum 6 mixtures) 	25	
	2	Open ended experiments– Physical chemistry experiments. (Any one experiment) Suggestions Determination of Physical Constants [Determination of colligative properties, Determination of viscosity of a binary liquid solution (Glycerol-water system) Refractometry experiments etc]	5	

Reference Books

- 1. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press, 2006.
- 2. B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017.

- 4. G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- Willard, H.H., Merritt, L.L., Dean, J. &Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988.
- 6. Christian, G.D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
- 7. Harris, D. C. Exploring Chemical Analysis, Ed. New York, W.H. Freeman, 2001.
- Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age, International Publisher, 2009.
- J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- 11. A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 12. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	O5	06							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO			2		2		1				1		
5													
CO			2		2		1				1		
6													

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark
CO6	\checkmark	\checkmark	\checkmark	

BSc CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	FUNDAMENTAI	FUNDAMENTALS OF PHYSICAL CHEMISTRY					
Type of Course	MINOR						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit Lecture Tutorial Practical Total Hours						
		per week	per week	per week			
	4	3	-	2	75		
Pre-requisites	1. Fundamentals of	f Thermodyr	namics				
	2. General idea abo	out state of e	quilibrium				
	3. Basic idea about	order of rea	ction				
	4. Basic knowledge	e in analytic	al principles	and structure	of molecules		
Course Summary	1. This course	e aims to fam	iliarise the s	tudents with t	he concepts of		
	thermodyna	amics, kineti	cs and photo	chemistry.			
	2. This course also aims to impart an idea about ionic and phase						
	equilibrium						
	3. This course	also aims to c	levelop profi	ciency in anal	lytical tools and to		
	draw molec	cular structur	es using soft	twares			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the fundamental concepts thermodynamic processes	U	F	Instructor- created exams / Quiz /Assignment
CO2	To evaluate the importance of ionic and phase equilibrium.	E	С	Instructor- created exams / Quiz /Assignment
CO3	To analyse the order of different reactions	An	С	Instructor- created exams / Quiz /Assignment
CO4	To appreciate the importance of photochemistry	U	С	Instructor- created exams /

				Quiz /Assignment
CO5	To create structures of different molecules and calculation of different parameters	С	Р	Lab work
CO6	To enable the students to determine the physical properties (physical constants).	Ар	Р	Lab work
# - Fa	member (R), Understand (U), Apply (Ap) ctual Knowledge(F) Conceptual Knowled ognitive Knowledge (M)	•		

Module	Unit	Content	Hrs	Marks				
Ι		Thermodynamics	10	22				
	1	Definition of thermodynamic terms - System - Surroundings -	1					
		Types of systems,						
	2 First law of Thermodynamics – Internal energy – Significance of							
		internal energy change –Enthalpy						
	3	Second law of Thermodynamics – Entropy and spontaneity –	2					
		Statement of second law based on entropy.						
	4	Entropy change in phase transitions (derivation not required) -	2					
		Entropy of fusion, vaporization and sublimation.						
	5	The concept of Gibbs free energy – Physical significance of free	1					
		energy –						
	6	Conditions for equilibrium and spontaneity based on ΔG values	2					
		- Effect of temperature on spontaneity of reaction. Third law of						
		Thermodynamics. Ionic and Phase Equilibria						
II		10	22					
	7	Introduction to acid base theories – pKa, pKb and pH	1					
	8	Buffer solutions Mechanism of buffer action – Buffer index –	2					
		Henderson equation – Applications of buffers						
	9	Hydrolysis of salts of all types - Degree of hydrolysis -	1					
		Hydrolysis constant and its relation with Kw						
	10	Solubility product and common ion effect.	2					
	11	Phases, components and degrees of freedom of a system, criteria	2					
		of phase equilibrium. Gibbs phase Rule						
	12	2						
III		Chemical Kinetics	15	32				
	13	The concept of reaction rates. Effect of temperature, pressure,	3					
		catalyst and other factors on reaction rates. Order and						
		molecularity of a reaction.						

1	1 /	Derivation of integrated rate equations for zone first and second	5	
	14	Derivation of integrated rate equations for zero, first and second	3	
		order reactions (both for equal and unequal concentrations of		
		reactants).		
	15	Half-life of a reaction. General methods for determination of	2	
		order of a reaction.		
	16	3		
		equation (qualitative treatment only)		
	17	problems	2	
IV		Photochemistry	10	22
	18	Introduction – Difference between thermal and photochemical	3	
	10	processes – Characteristics of electromagnetic radiation - Beer	C	
		Lambert's law.		
	19	Laws of photochemistry: Grothus-Draper law and Stark-	1	
	17		1	
	20	Einstein's law of photochemical equivalence. Quantum yield and its explanation with example – Photophysical	3	
	20		3	
		processes: Jablonski diagram – Fluorescence –		
	01	Phosphorescence.		
	21	Photosensitization, Role of photochemical reactions in	2	
		biochemical processes		
	22	Photostationary states – Chemiluminescence	1	
V		Drug et an 1	20	
V	A	Practical	30	
		nimum of seven experiments must be done. Out of the seven		
	-	iments, one is to be open-ended which can be selected by the		
	teache			
	1	• Absorption (and transmittance) measurements of a colourless	25	
		and a coloured light absorbing substance in a solution by using		
		e e ; e		
		a spectrophotometer either experimentally or by simulation.		
		a spectrophotometer either experimentally or by simulation. For simulation use		
		a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u>		
		a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u> <u>spectroscopy/simulation/expt1/mas_expt1.html</u>		
		a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u> <u>spectroscopy/simulation/expt1/mas_expt1.html</u> • Verify Beer Law using a spectrophotometer either		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u> <u>spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u> <u>spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u> <u>spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u> <u>spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u> <u>spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/beer-</u> 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/beer-law/simulation/expt4/mas_expt4.html</u> 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-</u> <u>spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/beer-</u> <u>law/simulation/expt4/mas_expt4.html</u> <u>https://mas-iiith.vlabs.ac.in/exp/lambert-</u> 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/beer-law/simulation/expt4/mas_expt4.html</u> <u>https://mas-iiith.vlabs.ac.in/exp/lambert-law/simulation/expt3/mas_expt3.html</u> 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/beer-law/simulation/expt4/mas_expt4.html</u> <u>https://mas-iiith.vlabs.ac.in/exp/lambert-law/simulation/expt3/mas_expt3.html</u> <u>https://mas-iiith.vlabs.ac.in/exp/beer-lambert-law/simulation/expt6/mas_expt6.html</u> 		
		 a spectrophotometer either experimentally or by simulation. For simulation use https://mas-iiith.vlabs.ac.in/exp/uv-visible- spectroscopy/simulation/expt1/mas_expt1.html Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use https://mas-iiith.vlabs.ac.in/exp/beer- law/simulation/expt4/mas_expt4.html https://mas-iiith.vlabs.ac.in/exp/lambert- law/simulation/expt3/mas_expt3.html https://mas-iiith.vlabs.ac.in/exp/beer-lambert- law/simulation/expt6/mas_expt6.html Draw structures of organic molecules using any chemistry 		
		 a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/uv-visible-spectroscopy/simulation/expt1/mas_expt1.html</u> Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use <u>https://mas-iiith.vlabs.ac.in/exp/beer-law/simulation/expt4/mas_expt4.html</u> <u>https://mas-iiith.vlabs.ac.in/exp/lambert-law/simulation/expt3/mas_expt3.html</u> <u>https://mas-iiith.vlabs.ac.in/exp/beer-lambert-law/simulation/expt6/mas_expt6.html</u> Draw structures of organic molecules using any chemistry structure drawing softwares/websites (any five molecules) 		
		 a spectrophotometer either experimentally or by simulation. For simulation use https://mas-iiith.vlabs.ac.in/exp/uv-visible- spectroscopy/simulation/expt1/mas_expt1.html Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use https://mas-iiith.vlabs.ac.in/exp/beer- law/simulation/expt4/mas_expt4.html https://mas-iiith.vlabs.ac.in/exp/lambert- law/simulation/expt3/mas_expt3.html https://mas-iiith.vlabs.ac.in/exp/beer-lambert- law/simulation/expt6/mas_expt6.html Draw structures of organic molecules using any chemistry structure drawing softwares/websites (any five molecules) Samples: 		
		 a spectrophotometer either experimentally or by simulation. For simulation use https://mas-iiith.vlabs.ac.in/exp/uv-visible- spectroscopy/simulation/expt1/mas_expt1.html Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use https://mas-iiith.vlabs.ac.in/exp/beer- law/simulation/expt4/mas_expt4.html https://mas-iiith.vlabs.ac.in/exp/lambert- law/simulation/expt3/mas_expt3.html https://mas-iiith.vlabs.ac.in/exp/beer-lambert- law/simulation/expt6/mas_expt6.html Draw structures of organic molecules using any chemistry structure drawing softwares/websites (any five molecules) Samples: https://molview.org/ 		
		 a spectrophotometer either experimentally or by simulation. For simulation use https://mas-iiith.vlabs.ac.in/exp/uv-visible- spectroscopy/simulation/expt1/mas_expt1.html Verify Beer Law using a spectrophotometer either experimentally or by simulation. For simulation use https://mas-iiith.vlabs.ac.in/exp/beer- law/simulation/expt4/mas_expt4.html https://mas-iiith.vlabs.ac.in/exp/lambert- law/simulation/expt3/mas_expt3.html https://mas-iiith.vlabs.ac.in/exp/beer-lambert- law/simulation/expt6/mas_expt6.html Draw structures of organic molecules using any chemistry structure drawing softwares/websites (any five molecules) Samples: 		

r			
	http://www.kingdraw.cn/en/		
	https://www.rcsb.org/chemical-sketch		
	• Measure the bond length and bond angle of organic molecules		
	using softwares		
	Samples:		
	https://molview.org/		
	$ullet$ Determination of heat of solution (ΔH) of		
	oxalic acid/benzoic acid from solubility		
	measurement.		
2	• Open ended experiments- Physical chemistry experiments.	5	
	(Any one experiment)		
	Suggestions		
	Determination of velocity constant for acid hydrolysis of		
	methyl acetate.		
	Determination of velocity constant for the saponification of		
	ethyl acetate.		
	Preparation of buffers and determination of pH values of		
	fruitjuices using pH meter.		
	Preparation of buffer solutions of different pH (i) Sodium		
	acetate-acetic acid (ii)		
	Ammonium chloride-ammonium hydroxide		
	Study the effect on pH of addition of HCl/NaOH to solutions		
	of acetic acid, sodium		
	acetate and their mixtures.		

Reference Books

- 1. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press, 2006.
- 2. B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017.
- 4. G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- J. Rajaram, J. C. Kuriacose, Chemical Thermodynamics, Pearson Education, New Delhi, 2013.
- 6. K. Laidler, Chemical Kinetics, 3rd Edn., Pearson Education, New Delhi, 2004.
- P. L. Soni, O. P. Dharmarha, U. N. Dash, Textbook of Physical Chemistry, 23rd Edn., Sultan Chand & Sons, New Delhi, 2011.
- 8. A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 9. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	03	04	05	06							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO			2		2		1				1		
5													
CO			2		2		1				1		
6													

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		✓
CO5	\checkmark	\checkmark	✓	
CO6	✓	✓	~	

BSc CHEMISTRY

Programme	B.Sc Chemistry									
Course Title	BASIC ORGANIC CHEMISTRY									
Type of Course	MINOR									
Semester	III									
Academic	200-299									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	3	-	2	75					
Pre-requisites	1. Fundamental Cond	cepts of orga	nic chemistry	- Nomenclatu	ıre,					
	Isomerism, Fuctional	groups, Hon	nologous seri	es						
Course	This course explores	basics of o	rganic chemi	istry reaction	mechanism,					
Summary	Reactions and me	chanism of	important	functional	groups and					
	stereochemistry									

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
00		Level*	Category#	used
CO1	To understand the basic concepts of reaction mechanisms	U	C	Instructor-created exams / Assignment
CO2	To realise types of organic reactions and intermediates	Ар	Р	Instructor-created exams Assignme nt / quizes
CO3	To analyse important application of functional groups	An	Р	Assignment / seminar/Internale xam
CO4	To understand how different functional groups confer distinct properties and reactivity, influencing the chemical behaviour of molecules	U	С	Assignment/Semi nar/
CO5	To realise the imporantace of stereoisomerism, optical activity and chirality/	U	С	Assignment/Grou p Discussion
CO6	To enable the students to develop analytical skills in organic qualitative analysis.	Ар	Р	Observation of practical skill/Viva voce

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Marks
Ι		Basic concepts of Organic Chemistry.	15	30
	1	Introduction- Homolysis and Heterolysis with suitable examples. Curley arrow rules. Reagents – Electrophiles, nucleophiles and free radicals	2	
	2	Electron Displacement Effects: Inductive effect, Definition - Characteristics - +I and -I groups. Applications: Acidity of carboxylic acids-effect of substituents.	2	
	3	Electromeric effect: Definition – Characteristics - +E effect and -E effect - Addition of H+ to ethene and addition of CN- to acetaldehyde.	1	
	4	. Mesomeric effect: Definition, Characteristics - +M and -M groups. Applications: Comparison of electron density in benzene,nitrobenzene, Phenol and Aniline	3	
	5	Hyperconjugation effect: Definition – Characteristics. Applications: comparison of stability of But-1-ene and But- 2-ene.	1	
	6	Steric effect	1	
	7	Reaction intermediate:Type ,shape and stability of Carbocations, carbanions and free radicals.	3	
	8	Types of organic reactions: Addition, Elimination, Substitution, Rearrangement and Redox reactions- Definition and one example	2	
II		Chemistry of alkyl halides, Alcohols and phenols	10	23
	9	Akyl halides Preparation of alkyl halides from alkanes and alkenes – Wurtz reaction and Fittig's reaction. SN1 and SN2 reactions of alkyl halides-Mechanism and stereochemistry.	3	
	10	Alcohols: Preparation from Grignard reagent – Preparation of ethanol from molasses – Wash, rectified spirit, absolute alcohol, denatured spirit, proof spirit and power alcohol (mention only).	2	
	11	Reactions of Alcohols-Substitution, dehydration, oxidationand esterification.Haloform reaction - iodoform test – Luca's test –Chemistry of methanol poisoning, harmful effect of ethanolin human body	3	

	12	Phenols : Preparation from chlorobenzene. Comparison of	1	
	12	acidity of phenol, p-nitrophenol and p-methoxyphenol –.	1	
TTT	13	Preparation and uses of phenolphthalein	1	22
III	1.4	Chemistry of carbonyl compounds and amines	10	22
	14	Aldehydes & Ketones: Preparation from alcohols –	3	
		Comparison of reactivity of aldehydes and ketones.		
		Nucleophilic addition reactions-addition of HCN and		
		bisulphite. Clemmension reduction and wolff kishner		
		reduction		
	15	Carboxylic Acids : Preparation from Grignard reagent –	2	
		Decarboxylation – Kolbe		
		electrolysis.		
	16	Amines: Preparation from nitro compounds – Hofmann's	3	
		bromamide reaction – Hofmann's carbylamines reaction.		
		Basicity: Comparison of basicity of ammonia, methylamine		
		and aniline		
	17	Diazonium salts :Preparation and synthetic application of	1	
		benzene diazonium chloride.		
	18	Preparation and uses of methyl orange	1	
IV		Stereochemistry	10	23
	19	Stereosiomerism: definition, classification. Geometrical	3	
		Isomerism: Definition, Condition, Geometrical isomerism		
		in but-2-ene and but-2-ene-1,4-dioic acid. cis and trans		
		isomerism, E and Z configurations. Methods of		
		distinguishing geometrical isomers using melting point and		
		dipolemoment.		
	20	Conformations: Newman projection, Saw-horse	3	
		projection. Conformations of ethane, n-butane, and		
		cyclohexane. Relative stability and energy diagrams.		
		Conformation of methyl cyclohexane.		
	21	Optical Isomerism - Optical Activity, Specific Rotation,	3	
		Chirality/Asymmetry, Enantiomers, Molecules with one		
		and two chiral-centres-Lactic acid and tartaric acid.		
		Distereoisomers, meso-structures .		
	22	Racemic, mixture. Racemisation and resolution	1	
\mathbf{V}	PRA	ACTICALS RELATED TO THE MODULE II and III	30	
	1	Reactions of Organic Compounds	4	
	2	II. Functional groups test for	20	
		1. Phenols -Phenol		
		2. Amines-Aniline		
		3. Aldehydes and ketones -benzaldehyde, benzophenone).		
		4. Carboxylic acid (benzoic acid, cinnamic acid).		
		5. Carbohydrates (glucose).		
		6. Amides (benzamide, urea		
	3	III.Preparation of organic compounds- open ended	6	

References

1. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

3. Kalsi, P. S., Stereochemistry Conformation and Mechanism; 8thEdn, New Age International, 2015

4. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

5. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3rd Edn., Vishal Publishing Company Co., 2010.

6. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

7. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th Edn., Pearson Education, Noida, 2014.

8. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*, 4th Edn., Pearson Education, Noida, 2011.

9. Arthur I. Vogel, *Elementary Practical Organic Chemistry- Small Scale Preparations*, 2nd Edn., Pearson Education, Noida, 2013

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	2	-	1	-	2			1	2	1	
CO 2	2		2	-	-	1	2			2	1	1	
CO 3	2	-	2	-	-	2	2			2	1		
CO 4	2	-	2		2	2	2			2	1		
CO 5	2		-	-	2	-	2			2	1		
CO 6	2	-	2		-	2	2		1		2		1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar Midterm Exam .
- -
- Practical exam (20%) •

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	Seminar/Gr oup Discussion	Quizes/viva	Observation Of practical Skill	End Semester Examinations
CO 1	\checkmark	\checkmark				\checkmark
CO 2	\checkmark	1		\checkmark		\checkmark
CO 3	\checkmark		\checkmark			\checkmark
CO 4		\checkmark	\checkmark			\checkmark
CO 5		\checkmark	\checkmark			\checkmark
CO 6				\checkmark	\checkmark	\checkmark

BSc CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	BIOORGANIC CH	EMISTRY					
Type of Course	MINOR						
Semester	III						
Academic	200-299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Nomenclature	 Fundamental Concepts of organic chemistry- Nomenclature, isomerism, Functional groups, Homologous series Preliminary ideas of carbohydrates and Biomolecules 					
Course	This course explores basics of organic chemistry reaction mechanism,						
Summary	Reactions and mecha	nism of imp	ortant function	onal groups, C	Chemistry of		
	Carbohydrates,Biomo	plecules and	natural produ	icts			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO 1	To understand the basic concepts of reaction mechanisms	U	C	Instructor-created exams / Assignment
CO 2	To realise types of organic reactions and intermediates	Ар	Р	Instructor-created exams Assignment /quizes
CO 3	To understand how different functional groups confer distinct properties and reactivity, influencing the chemical behaviour of molecules	U	С	Assignment/Seminar
CO 4	To appreciate the importance of biomolecules in recognizing their central role in life processes	An	Р	Instructor-created exams / Assignment
CO 5	To emphasize how organic chemistry provides a framework for unravelling	U	С	Group work /Assignment/class test

	the complexities of bio molecular structures.						
CO	To enable the students to	Ар	Р	Observation of practical			
6	develop analytical skills in			skill/Viva voce			
	organic qualitative analysis						
* - Re	emember (R), Understand (U),	Apply (Ap), A	nalyse (An), Eval	uate (E), Create (C)			
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metao	cognitive Knowledge (M)						

Module	Unit	Content	Hrs	Marks	
Ι		Basic concepts of Organic Chemistry.	15	30	
	1	Introduction- Homolysis and Heterolysis with suitable examples. Curley arrow rules. Reagents – Electrophiles, nucleophiles and free radicals	2		
	2	Electron Displacement Effects: Inductive effect, Definition - Characteristics - +I and -I groups. Applications: Acidity of carboxylic acids-effect of substituents.	2		
	3	Electromeric effect: Definition – Characteristics - +E effect and - E effect - Addition of H+ to ethene and addition of CN- to acetaldehyde.	1		
	4	. Mesomeric effect: Definition, Characteristics - +M and -M groups. Applications: Comparison of electron density in benzene,nitrobenzene, Phenol and Aniline	3		
	5 Hyperconjugation effect: Definition – Characteristics. Applications: comparison of stability of But-1-ene and But-2-ene.				
	6	Steric effect	1		
	7	Reaction intermediate: Type , shape and stability of Carbocations, carbanions and free radicals.	3		
	8	Types of organic reactions: Addition, Elimination, Substitution, Rearrangement and Redox reactions-Definition and one example	2		
II		Chemistry of carbonyl compounds and amines	10	22	
	9	Aldehydes & Ketones: Preparation from alcohols –Comparison of reactivity of aldehydes and ketones. Nucleophilic addition reactions-addition of HCN and bisulphite.	3		
	10	Carboxylic Acids : Preparation from Grignard reagent – Decarboxylation – Kolbe electrolysis	2		
	11	Amines: Preparation from nitro compounds – Hofmann's bromamide reaction – Hofmann's carbylamines reaction. Basicity: Comparison of basicity of ammonia, methylamine and aniline	3		
	12	Diazonium salts :Preparation and synthetic application of benzene diazonium chloride	1		

	13	Preparation and uses of methyl orange	1	
III		Carbohydrates	10	23
	14	Classification- Monosaccharides, oligosaccharides, and	2	
		polysaccharides, Aldose and Ketose, reducing and nonreducing		
		sugars		
	15	Cyclic structure of Ribose, Deoxy ribose. glucose and fructose.	2	
	16	D and L forms of glyceraldehyde, Glucose - manufacture of	2	
		glucose from starch, physical properties, uses, Structure of D and		
		L glucose		
	17	Analytical test for glucose - effect of heating, effect of conc	1	
		sulphuric acid, Fehling's test, Tollens test, Molisches test.		
	18	Fructose- preparation from cane sugar, properties. Sucrose -	3	
		manufacture of sucrose from sugar cane juice. Starch and		
		cellulose - physical properties, structure (Basic ideas only)		
IV		Proteins and Nucleic acids	10	23
	19	Amino acids – Classification – Structure of amino acids –	3	
		Zwitter ion formation – Isoelectric point. Peptide		
		linkage, polypeptides and proteins. Primary , secondary and		
		tertiary structure of proteins. Denaturation of proteins. Tests for		
		proteins: Xanthoprotein test, Biuret test and Ninhydrin test.		
	20	Enzymes, characteristics and examples	1	
	21	Nucleic acids: Introduction, constituents of nucleic acids –	3	
		nitrogenous bases, nucleosides and nucleotides. Double helical		
		structure of DNA. Difference between DNA & RNA – DNA		
		finger printing and its applications		
	22	Lipids:Classification-Fats and oils.Biological functions of lipids.	3	
		Steroids :classification.Structure and biological functions of		
		cholesterol,testosteroneand		
		progestron. Elementary idea of HDL and LDL		
V		PRACTICALS RELATED TO THE MODULE II and III	30	
v	1	Reactions of Organic Compounds	4	
	1	Reactions of Organic Compounds	4	
	2	II. Functional groups test for	20	
	_	1. Phenols -Phenol		
		2. Amines-Aniline		
		3. Aldehydes and ketones -benzaldehyde, benzophenone).		
		4. Carboxylic acid (benzoic acid, cinnamic acid).		
		5. Carbohydrates (glucose).		
		6. Amides (benzamide, urea		
	3	III.Preparation of organic compounds-open ended	6	
			-	

References

1. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

3. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

4. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3rd Edn., Vishal Publishing Company Co., 2010.

5. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

6. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th Edn., Pearson Education, Noida, 2014.

7. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*, 4th Edn., Pearson Education, Noida, 2011.

8 . Arthur I. Vogel, *Elementary Practical Organic Chemistry- Small Scale Preparations*, 2nd Edn., Pearson Education, Noida, 2013

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	2	-	1	-	2			1	2	1	
CO 2	2		2	-	-	1	2			2	1	1	
CO 3	2	-	2	-	2	2	2			2	1		
CO 4	2	-			2		2			2	1		
CO 5	2		-	-	2	-	2			2	1		
CO 6	2	-	2		-	2	2		1		2		1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	Seminar/Gr oup Discussion	Quizes/viva	Observation Of practical Skill	End Semester Examinations
CO 1	\checkmark	\checkmark				\checkmark
CO 2	\checkmark	\checkmark		\checkmark		\checkmark
CO 3	\checkmark		\checkmark			\checkmark
CO 4		\checkmark				\checkmark
CO 5		\checkmark	\checkmark			\checkmark
CO 6				\checkmark	1	\checkmark

BSc CHEMISTRY

Programme	B.Sc Chemistry	B.Sc Chemistry					
Course Title	ORGANIC AND PH	IYTOCHEN	AISTRY				
Type of Course	MINOR						
Semester	III						
Academic	200-299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	1. Basic concepts of (Organic Cher	nistry				
	2. Basic concepts of I	Biomolecules	5				
Course	This course ensure	students to	acquire a pr	ofound under	standing of		
Summary	Organic Chemistry by emphasizing fundamental reactions and concepts,						
	and to explore the i	mportance o	of Organic C	hemistry in t	he study of		
	biomolecules.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the fundamental concepts of reaction mechanisms through the step by step processes involved in chemical reactions	U	С	Instructor-created exams / Assignments
CO2	To recognize the various types of organic reactions and reaction intermediates	Ар	Р	Assignment / seminar/quizes
CO3	To understand how different functional groups confer distinct properties and reactivity, influencing the chemical behaviour of molecules.	U	С	Assignment/Seminar/Class test
CO4	To appreciate the importance of biomolecules in	Ар	Р	Group work /Assignment/class test

	recognizing their central role in life processes.			
CO5	To emphasize how organic chemistry provides a framework for unravelling the complexities of bio molecular structures.	Ap	Р	Group work /Assignment/class test
CO6	To empower students to cultivate analytical skills in organic qualitative/quantitative analysis by emphasizing systematic approaches.	Ap	Р	Observation of practical skill/Viva voce
# - Fa	emember (R), Understand (U actual Knowledge(F) Concep cognitive Knowledge (M)		• • •	

Module	Unit	Content	Hrs	Marks
Ι		Basic concepts of Organic Chemistry	15	30
	1	Homolytic and heterolytic fission with suitable examples. Curly	1	
		arrow rules. Types of reagents -Electrophiles, Nucleophiles and		
		Free radicals.		
	2	Electron Displacement Effects: Inductive effect, definition,	2	
		Characteristics - +I and -I groups. Applications: Acidity of carboxylic		
		acids-effect of substituents.		
	3	Electromeric effect: Definition, Characteristics - +E effect and -E	2	
		effect. Addition of H^+ to ethene and addition of CN^- to acetaldehyde.		
	4	Mesomeric effect: Definition, Characteristics - +M and -M groups.	2	
		Applications: Comparison of electron density in benzene,		
		nitrobenzene, phenol and aniline.		
	5	Hyperconjugation effect: Definition, Characteristics. Applications:	2	
		comparison of stability of But-1-ene and But-2-ene.		
	6	Steric effect and its importance in reactivity.	1	
	7	Reaction intermediate: Type, shape and stability of carbocations,	3	
		carbanions and free radicals.		
	8	Types of organic reactions: Addition, Elimination, Substitution,	2	
		Rearrangement and Redox reactions-Definition and example.		
II		Chemistry of Alkyl halides, Alcohols and Phenols	10	23
	9	Akyl halides- Preparation of alkyl halides from alkanes and alkenes-	3	
		Wurtz		
		reaction and Fittig's reaction. SN ¹ and SN ² reactions of alkyl		
		halides-Mechanism and stereochemistry.		

10		2	
10	Alcohols: Preparation from Grignard reagent – Preparation of	2	
	ethanol from molasses – Weah restified crisit sheelets cleabel, denotored enjoit group for init.		
	1		
11		3	
11	•	5	
	•		
12		1	
12		1	
13		1	
15	reputation and uses of phonorphilatern.	1	
	Chemistry of Carbonyl compounds and Amines	10	22
14	Aldehydes & Ketones: Preparation from alcohols. Comparison of	1	
	reactivity of aldehydes and ketones.		
15	Nucleophilic addition reactions in aldehydes and ketone. Addition	2	
	of HCN and bisulphite. Clemmensen reduction and Wolff Kishner		
	reduction.		
16	Carboxylic Acids: Preparation from Grignard reagent-	2	
	Decarboxylation-Kolbe		
	electrolysis.		
17		3	
18		2	
10			23
19		2	
20		4	
21	Natural products: Alkaloids: Extraction, Classification, Source,	1	
	structure and physiological functions of nicotine, coniine and		
	piperine.		
22	piperine.Terpenes: Classification with examples, Isoprene rule – Isolation of	3	
22		3	
22	Terpenes: Classification with examples, Isoprene rule – Isolation of	3	
22	Terpenes: Classification with examples, Isoprene rule – Isolation of essential oils by steam distillation – Uses of lemongrass oil,	3	
22	Terpenes: Classification with examples, Isoprene rule – Isolation ofessential oils by steam distillation – Uses of lemongrass oil,eucalyptus oil and sandalwood oil – Source, structure and uses of	3	
22	Terpenes: Classification with examples, Isoprene rule – Isolation of essential oils by steam distillation – Uses of lemongrass oil, eucalyptus oil and sandalwood oil – Source, structure and uses of citral and menthol – Natural rubber – Vulcanization and its	3 30	
	15 16 17 18 19 20	Wash, rectified spirit, absolute alcohol, denatured spirit, proof spirit and power alcohol (mention only). 11 Reactions of alcohols-Substitution, dehydration, oxidation and esterification. Haloform reaction - iodoform test -Luca's test-Chemistry of methanol poisoning, harmful effect of ethanol in human body. 12 Phenols: Preparation from chlorobenzene. Comparison of acidity of phenol, p-nitrophenol and p-methoxyphenol. 13 Preparation and uses of phenolphthalein. 14 Aldehydes & Ketones: Preparation from alcohols. Comparison of reactivity of aldehydes and ketones. 15 Nucleophilic addition reactions in aldehydes and ketone. Addition of HCN and bisulphite. Clemmensen reduction and Wolff Kishner reduction. 16 Carboxylic Acids: Preparation from Grignard reagent- Decarboxylation-Kolbe electrolysis. 17 Amines: Preparation from nitro compounds-Hofmann's bromamide reaction, Hofmann's carbylamines reaction. Basicity: Comparison of basicity of ammonia, methylamine and aniline. 18 Diazonium salts: Preparation and uses of methyl orange. Biomolecules 19 Carbohydrates: Classification with examples-cyclic structures of glucose and fructose - Applications of carbohydrates. 20 Proteins: Amino acids- Classification, Zwitter ion formation – Peptide linkage – Polypeptides and proteins –Primary, secondary and tertiary structure of proteins – Globular and fibrous proteins – Denaturation of proteins. Enzymes: Characteristics and examples.	Wash, rectified spirit, absolute alcohol, denatured spirit, proof spirit and power alcohol (mention only). 11 Reactions of alcohols-Substitution, dehydration, oxidation and esterification. 3 Haloform reaction - iodoform test -Luca's test-Chemistry of methanol poisoning, harmful effect of ethanol in human body. 1 12 Phenols: Preparation from chlorobenzene. Comparison of acidity of phenol, p-nitrophenol and p-methoxyphenol. 1 13 Preparation and uses of phenolphthalein. 1 14 Aldehydes & Ketones: Preparation from alcohols. Comparison of reactivity of aldehydes and ketones. 10 15 Nucleophilic addition reactions in aldehydes and ketone. Addition of HCN and bisulphite. Clemmensen reduction and Wolff Kishner reduction. 2 16 Carboxylic Acids: Preparation from Grignard reagent-Decarboxylation-Kolbe electrolysis. 2 17 Amines: Preparation from nitro compounds-Hofmann's bromamide reaction, Hofmann's carbylamines reaction. Basicity: Comparison of basicity of ammonia, methylamine and aniline. 3 18 Diazonium salts: Preparation and synthetic application of benzene diazonium chloride. Preparation and uses of methyl orange. 2 20 Proteins: Classification with examples-cyclic structures of glucose and fructose - Applications of carbohydrates. 2 20 Proteins: Amino acids- Classification, Zwitter ion formation - Peptide linkage – Polypeptides

24	Study of the reactions of functional groups from the following list.	20	
	1. Phenols –(phenol)		
	2. Amines-(aniline)		
	3. Aldehydes and Ketones-(benzaldehyde, benzophenone).		
	4. Carboxylic acids (benzoic acid, cinnamic acid).		
	5. Carbohydrates (glucose).		
	6. Amides (benzamide, urea)		
25	Organic Preparations- open ended	6	

References

1. Morrison, R. T. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

3. I. L. Finar, Organic Chemistry, Vol. I & II, 5th Edn., Pearson Education, New Delhi, 2013.

4. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3rd Edn., Vishal Publishing Company Co., 2010.

5. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

6. O.P Agarwal, Chemistry of Organic Natural Products, 30 th Edn. Goel Publications, 2006

7. S.P Bhutani, Chemistry of Biomolecules, Ane Books Pvt Ltd, 2000

8. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th Edn., Pearson Education, Noida, 2014.

9. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*, 4th Edn., Pearson Education, Noida, 2011.

10. V.K Ahluwalia, S.Dhingra. Comprehensive Practical Organic Chemistry, Universities Press, Hyderabad, 2004.

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	2	-	1	-	2			1	2	1	
CO 2	2		2	-	-	1	2			2	1	1	
CO 3	2	-	2	-	-	2	2			2	1		

Mapping of COs with PSOs and POs :

CO 4	2	-	2		2	2	2		2	1	
CO 5	2		-	-	2	-	2		2	1	
CO 6	2	-	2		-	2	2	1		2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar Midterm Exam •
- •
- Practical exam (20%) •

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	Seminar/Gr oup Discussion	Quizes/viva	Observation Of practical Skill	End Semester Examinations
CO 1	\checkmark	\checkmark				\checkmark
CO 2	\checkmark	\checkmark		\checkmark		\checkmark
CO 3	\checkmark		~			\checkmark
CO 4		\checkmark	~			\checkmark
CO 5		\checkmark	~			\checkmark
CO 6				\checkmark	\checkmark	\checkmark

BSc CHEMISTRY

Programme	B.Sc Chemistry							
Course Title	ORGANIC CHEMI	STRY IN D	AILY LIFE					
Type of Course	MINOR							
Semester	3							
Academic	200-299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	1. Basic concepts of (Organic Chei	mistry					
	2. Chemistry and its i	mportance ir	n daily life					
Course	This course ensure	students to	acquire a pr	ofound under	standing of			
Summary	Organic Chemistry, e	Organic Chemistry, emphasizing fundamental reactions, concepts and its						
	implication in daily li	ife.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the fundamental concepts of reaction mechanisms through the step by step processes involved in chemical reactions	U	С	Instructor-created exams / Assignment
CO2	To recognize the various types of organic reactions and reaction intermediates	Ар	Р	Assignment / seminar/quizzes
CO3	To understand how different functional groups confer distinct properties and reactivity, influencing the chemical behaviour of molecules.	U	С	Assignment/Seminar/Internal exam
CO4	To understand the importance of Chemistry in Daily Life.	Ар	Р	Group work /Assignment
CO5	To understand the role of Chemistry in human	Ар	Р	Group work /Assignment

	happiness index and life expectancy.			
CO6	To empower students to cultivate analytical skills in organic qualitative/quantitative analysis by emphasizing systematic approaches.	Ар	Р	Observation of practical skill/Viva voce
# - Fa	emember (R), Understand (U) ctual Knowledge(F) Concept cognitive Knowledge (M)		-	

Module	Unit	Content	Hrs	Marks
Ι		Basic concepts of Organic Chemistry	15	30
	1	Homolytic and heterolytic fission with suitable examples. Curly arrow	1	
		rules. Types of reagents -Electrophiles, Nucleophiles and Free radicals.		
	2	Electron Displacement Effects: Inductive effect, definition,	2	
		Characteristics - +I and -I groups. Applications: Acidity of carboxylic		
		acids-effect of substituents.		
	3	Electromeric effect: Definition, Characteristics - +E effect and -E effect.	2	
		Addition of H^+ to ethene and addition of CN^- to acetaldehyde.		
	4	Mesomeric effect: Definition, Characteristics - +M and -M groups.	2	
		Applications: Comparison of electron density in benzene, nitrobenzene,		
		phenol and aniline.		
	5	Hyperconjugation effect: Definition, Characteristics. Applications:	2	
		comparison of stability of But-1-ene and But-2-ene.		
	6	Steric effect and its importance in reactivity.	1	
	7	Reaction intermediate: Type, shape and stability of carbocations,	3	
		carbanions and free radicals.		
	8	Types of organic reactions: Addition, Elimination, Substitution,	2	
		Rearrangement and Redox reactions-Definition and example.		
II		Chemistry of Alkyl halides, Alcohols and Phenols	10	22
	9	Akyl halides- Preparation of alkyl halides from alkanes and alkenes-	3	
		Wurtz reaction and Fittig's reaction. SN ¹ and SN ² reactions of alkyl		
		halides-Mechanism and stereochemistry.		
	10	Alcohols: Preparation from Grignard reagent – Preparation of ethanol	2	
		from molasses –		
		Wash, rectified spirit, absolute alcohol, denatured spirit, proof spirit		
		and power alcohol		
		(mention only).		
	11	Reactions of alcohols-Substitution, dehydration, oxidation and	3	
		esterification.		
		Haloform reaction - iodoform test -Luca's test-Chemistry of methanol		
		poisoning, harmful effect of ethanol in human body.		

	12	Phenols: Preparation from chlorobenzene. Comparison of acidity of	1	
		phenol, p-nitrophenol and p-methoxyphenol.	-	
	13	Preparation and uses of phenolphthalein.	1	
III		Chemistry of Carbonyl compounds and Amines	10	23
	14	Aldehydes & Ketones: Preparation from alcohols. Comparison of	1	
		reactivity of aldehydes and ketones.	_	
	15	Nucleophilic addition reactions in aldehydes and ketone. Addition of	2	
		HCN and bisulphite. Clemmensen reduction and Wolff Kishner	_	
		reduction.		
	16	Carboxylic Acids: Preparation from Grignard reagent-	2	
	_	Decarboxylation-Kolbeelectrolysis.		
	17	Amines: Preparation from nitro compounds-Hofmann's bromamide	3	
		reaction, Hofmann's carbylamines reaction. Basicity: Comparison of		
		basicity of ammonia, methylamine and aniline.		
	18	Diazonium salts: Preparation and synthetic application of benzene	2	
	_	diazonium chloride. Preparation and uses of methyl orange.		
IV		Chemistry in Daily Life	10	23
	19	Petrochemicals: Name, carbon range and uses of fractions of petroleum	2	
		distillation. Octane number, Cetane number, Flash point. LPG and CNG:		
		Composition and uses.		
	20	Pharmaceuticals: Drug - Chemical name, generic name and trade names	2	
	20	with examples. Antipyretics, analgesics, antibiotics, antacids, antiseptics	2	
	21	(definition and examples, structure not expected).	2	
	21	Dyes: Definition- Requirements of a dye. Theories of colour and	3	
		chemical constitution. Structure and applications of martius yellow,		
		indigo and alizarin.		
	22	Food: Food additives: Food preservatives, artificial sweeteners and	3	
		antioxidants (definition and examples, structures not required)		
		Commonly used permitted and non-permitted food colours (structures		
		not required).		
V		Organic Chemistry Practicals	30	
	23	General Reactions of Organic Compounds	4	
	24	Study of the reactions of functional groups from the following list.	20	
		1. Phenols –(phenol)		
		2. Amines-(aniline)		
		3. Aldehydes and Ketones-(benzaldehyde, benzophenone).		
		4. Carboxylic acids (benzoic acid, cinnamic acid).		
	1	5. Carbohydrates (glucose).		
	25	6. Amides (benzamide, urea) Organic Preparations- open ended	6	

References

1. Morrison, R. T. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

3. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

4. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3rd Edn., Vishal Publishing Company Co., 2010.

5. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

6. Jayashree Ghosh. A textbook of Pharmaceutical Chemistry, 3 rd Edn. S Chand and Company Ltd. New Delhi,1999

7. B. Srilakshmi. Food Science 5th Edn. New Age publishers, New Delhi, 2010.

8. K. Singh. Chemistry in Daily Life. Prentice Hall of India, New Delhi

9. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th Edn., Pearson Education, Noida, 2014.

10. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*, 4th Edn., Pearson Education, Noida, 2011.

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	2	-	1	-	2			1	2	1	
CO 2	2		2	-	-	1	2			2	1	1	
CO 3	2	-	2	-	-	2	2			2	1		
CO 4	2	-	2		2	2	2			2	1		
CO 5	2		-	-	2	-	2			2	1		
CO 6	2	-	2		-	2	2		1		2		1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	Seminar/Gr oup Discussion	Quizes/viva	Observation Of practical Skill	End Semester Examinations
CO 1	\checkmark	\checkmark				\checkmark
CO 2	\checkmark	\checkmark		\checkmark		\checkmark
CO 3		~	\checkmark			\checkmark
CO 4		~	\checkmark			\checkmark
CO 5		~	\checkmark			\checkmark
CO 6				\checkmark	1	~

Programme	B.Sc Chemistry									
Course Title	ORGANIC CHEMISTRY AND POLYMERS									
Type of Course	MINOR	MINOR								
Semester	III	III								
Academic	200-299									
Level										
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours					
	4	3	-	2	75					
Pre-requisites	1. Basic concepts of (Organic Chei	nistry							
	2. Basic concepts of I	Polymer Che	emistry							
Course	This course ensure	students to	acquire a pr	ofound under	standing of					
Summary	Organic Chemistry and	nd Polymer (Chemistry by	emphasizing	fundamental					
	reactions and concept	ts.								

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the fundamental concepts of reaction mechanisms through the step by step processes involved in chemical reactions	U	C	Instructor-created exams / Assignments
CO2	To recognize the various types of organic reactions and reaction intermediates	Ар	Р	Assignment / seminar/quizes
CO3	To understand how different functional groups confer distinct properties and reactivity, influencing the chemical behaviour of molecules.	U	С	Assignment/Seminar/Class test
CO4	To understand the significance of polymers in daily life by recognizing their ubiquitous presence in materials and products.	Ар	Р	Group work /Assignment

CO5	To understand the applications of different polymers.	Ар	Р	Group work /Assignment						
CO6	To empower students to cultivate analytical skills in organic qualitative/quantitative analysis by emphasizing systematic approaches.	Ap	Р	Observation of practical skill/Viva voce						
* - Re	emember (R), Understand (U), Apply (Ap)	, Analyse (An)	, Evaluate (E), Create (C)						
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)									
Meta	cognitive Knowledge (M)									

Module	Unit	Content	Hrs	Marks
Ι		Basic concepts of Organic Chemistry	15	32
	1	Homolytic and heterolytic fission with suitable examples. Curly arrow rules. Types of reagents -Electrophiles, Nucleophiles and Free radicals.	1	
	2	Electron Displacement Effects: Inductive effect, definition, Characteristics - +I and -I groups. Applications: Acidity of carboxylic acids-effect of substituents.	2	
	3	Electromeric effect: Definition, Characteristics - +E effect and -E effect. Addition of H^+ to ethene and addition of CN^- to acetaldehyde.	2	
	4	Mesomeric effect: Definition, Characteristics - +M and -M groups. Applications: Comparison of electron density in benzene, nitrobenzene, phenol and aniline.	2	
	5	Hyperconjugation effect: Definition, Characteristics. Applications: comparison of stability of But-1-ene and But-2- ene.	2	
	6	Steric effect and its importance in reactivity.	1	
	7	Reaction intermediate: Type, shape and stability of carbocations, carbanions and free radicals.	3	
	8	Types of organic reactions: Addition, Elimination, Substitution, Rearrangement and Redox reactions-Definition and example.	2	
II		Chemistry of Alkyl halides, Alcohols and Phenols	10	22
	9	Akyl halides- Preparation of alkyl halides from alkanes and alkenes- Wurtz reaction and Fittig's reaction. SN ¹ and SN ² reactions of alkyl halides-Mechanism and stereochemistry.	3	
	10	Alcohols: Preparation from Grignard reagent – Preparation of ethanol from molasses – Wash, rectified spirit, absolute alcohol, denatured spirit,	2	

		proof spirit and power alcohol		
		(mention only).		
	11	Reactions of alcohols-Substitution, dehydration, oxidation and esterification. Haloform reaction - iodoform test -Luca's test-Chemistry of methanol poisoning, harmful effect of ethanol in human	3	
	12	body. Phenols: Preparation from chlorobenzene. Comparison of	1	
		acidity of phenol, p-nitrophenol and p-methoxyphenol.		
	13	Preparation and uses of phenolphthalein.	1	
III		Chemistry of Carbonyl compounds and Amines	10	22
	14	Aldehydes & Ketones: Preparation from alcohols. Comparison of reactivity of aldehydes and ketones.	1	
	15	Nucleophilic addition reactions in aldehydes and ketone. Addition of HCN and bisulphite. Clemmensen reduction and Wolff Kishner reduction.	2	
	16	Carboxylic Acids: Preparation from Grignard reagent- Decarboxylation-Kolbe electrolysis.	2	
	17	Amines: Preparation from nitro compounds-Hofmann's bromamide reaction, Hofmann's carbylamines reaction. Basicity: Comparison of basicity of ammonia, methylamine and aniline.	3	
	18	Diazonium salts: Preparation and synthetic application of benzene diazonium chloride. Preparation and uses of methyl orange.	2	
IV		Polymers	10	22
	19	Classification based on origin (natural, semi synthetic and synthetic), synthesis (addition and condensation), structure (linear, branched chain and cross linked) and intermolecular forces (elastomers, fibres, thermoplastics and thermosetting polymers).	3	
	20	Tacticity- Types of Polymerisation. Chain and step growth polymerizations- Free radical, ionic and coordination polymerizations.	2	
	21	Structure and applications of synthetic rubbers (Buna-S, Buna-N and neoprene), synthetic fibres (Nylon 66, Nylon 6 and dacron), thermoplastics (polyethene, polystyrene, PVC and teflon) and thermosetting plastics (bakelite and melmac).	3	
	22	Uses of kevlar, nomex and lexan- Biodegradable polymers (PGA, PLA and PHBV) and their applications.	2	
V		Organic Chemistry Practicals	30	
	23	General Reactions of Organic Compounds	4	
	24	 Study of the reactions of functional groups from the following list. 1. Phenols –(phenol) 2. Amines-(aniline) 	20	

	 Aldehydes and Ketones-(benzaldehyde, benzophenone). Carboxylic acids (benzoic acid, cinnamic acid). Carbohydrates (glucose). Amides (benzamide, urea) 		
25	Organic Preparations – open ended	6	

References

1. Morrison, R. T. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

3. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

4. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3rd Edn., Vishal Publishing Company Co., 2010.

5. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

6. V.R Gowarikar. Polymer Chemistry, New Age International Pvt Ltd., New Delhi, 2010.

7. B.K. Sharma, Polymer Chemistry. Goel Publishing House, Meerut, 1989

8. Gowri Sankar Misra. Introductory Polymer Chemistry, New Age International, New Delhi, 1993.

9. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th Edn., Pearson Education, Noida, 2014.

10. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*, 4th Edn., Pearson Education, Noida, 2011.

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	2	-	1	-	2			1	2	1	
CO 2	2		2	-	-	1	2			2	1	1	
CO 3	2	-	2	-	-	2	2			2	1		
CO 4	2	-	2		2	2	2			2	1		
CO 5	2		-	_	2	-	2			2	1		
CO 6	2	-	2		-	2	2		1		2		1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar Midterm Exam .
- •
- Practical exam (20%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	Seminar/Gr oup Discussion	Quizes/viva	Observation Of practical Skill	End Semester Examinations
CO 1	\checkmark	\checkmark				\checkmark
CO 2	\checkmark	\checkmark		\checkmark		\checkmark
CO 3			\checkmark			\checkmark
CO 4		\checkmark	\checkmark			\checkmark
CO 5		\checkmark	\checkmark			\checkmark
CO 6				\checkmark	1	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry					
Course Title	APPLIED ORGANIC CHEMISTRY					
Type of Course	MINOR					
Semester	III					
Academic	200-299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	1. Fundamental	-	-	•	clature,	
	isomerism, Fu	-				
	2. Basic concept	of organic r	eaction mech	anism, Chemi	istry of	
	functional gro	oup				
Course	This course explore	es organic s	spectroscopy,	Chemistry	of aromatic	
Summary	hydrocarbons, applic	cations like	medicinal c	chemistry and	l separation	
	techniques					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	To understand the fundamental concept of various spectroscopic techniques	U	С	Exams/Assignment
CO2	To provide a comprehensive understanding of aromatic hydocarbons	U	С	Exams/Assignment/ Group discussion
CO3	To provide basic knowledgeof medicinal chemistry	U	С	Internal test/Seminar
CO4	To understand role of chemistry in human life	An	С	Seminar/Assignment /Qizes
CO5	To provide concepts various separation and purification techniques	U	Р	Exams/Seminar
CO6	To empower students in various separation and purification techniques	Ар	Р	Lab work/Viva

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
Ι		Organic spectroscopy	15	30
	1	Origin of spectra - Interaction of electromagnetic radiation with matter. Different types of energy levels in molecules: Rotational, vibrational and electronic levels.	2	
	2	Statement of Born-Oppenheimer approximation - Fundamental laws of spectroscopy and selection rules (derivations not required).	1	
	3	<i>UV-Visible Spectroscopy:</i> Basic principle- Beer-Lambert's law - Electronic transitions in molecules $(\sigma \rightarrow \sigma^*, n \rightarrow \sigma^*, \pi \rightarrow \pi^* \text{ and } n \rightarrow \pi^*)$	2	
	4	Chromophore and auxochrome - Red shift and blue shift.	1	
	5	λ max calculation for dienes (substituted butadienes)	2	
	6	IR spectroscopy- basic principles, factors affecting absorption frequencies, fingerprint and functional group regionCharacteristic stretching frequencies of O-H, N-H, C-H, C=C, C=N and C=O functional groups	3	
	7	NMR Spectroscopy: Introduction - Chemical shift and spin- spin coupling -	2	
	8	Application in elucidating the structure of ethanol, propanal and acetone (detailed study not required).	2	
II		Chemistry of Aromatic hydrocarbons	12	27
	9	Nomenclature and isomerism in substituted benzene. Structure and stability of benzene: Kekule, resonance and molecular orbital description.	2	
	10	Mechanism of aromatic electrophilic substitution: Halogenation, nitration, sulphonation and Friedel-Craft's reactions	3	
	11	Orientating effect of common substituents in aromatic electrophilic substitution	2	
	12	Aromaticity and Huckel's rule	2	
	13	Application to benzenoid (benzene, naphthalene and anthracene) and nonbenzenoid (pyrrole, pyridine and indol) aromatic compounds.	3	

III		Medicinal Chemistry	10	23
	14	Drug: Chemical name, generic name and trade names with	2	
		examples		
	15	Terminology: Prodrug, pharmacy, pharmacology,	2	
		pharmacophore, pharmacognosy, pharmacodynamics and		
		pharmacokinetics (elementary idea only).		
	16	Antipyretics, analgesics, antacids, antihistamines, antibiotics,	3	
		antiseptics, disinfectants, anaesthetics(definition and		
		examples).		
			-	
	17	tranquilizers, narcotics, antidepressants and psychedelic	2	
	10	drugs (definition and examples).	1	
	18	Synthesis of aspirin and Paracetamol	1	10
IV	10	Purification and Characterization Techniques	8	18
	19	Distillation- Simple, fractional, steam and vacuum	2	
	20	distillations	2	
	20	recrystalisation, sublimation, solvent extraction	2	
	21	Chromatography, stationary phase, mobile phase, Rf values	2	
	22	TLC, Column chromatography, HPLC and GC (basic		
		concepts only).		
V	PR	ACTICALS RELATED TO THE MODULE II and III	30	
·	1	Introduction to organic lab	4	
	2	1.Distillation of Aniline, Limonene (from orange peels)	20	
		1. Purification of organic compounds by crystallization		
		using the following solvents: a. Water b. Alcohol		
		using the following solvents. a. water 0. Alcohol		
		0		
		2. Sublimation of a dicarboxylic acid/Naphthalene		
		 Sublimation of a dicarboxylic acid/Naphthalene Chromatographic separations – (any two) 		
		 Sublimation of a dicarboxylic acid/Naphthalene Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper 		
		 Sublimation of a dicarboxylic acid/Naphthalene Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. 		
		 Sublimation of a dicarboxylic acid/Naphthalene Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or 		
		 Sublimation of a dicarboxylic acid/Naphthalene Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer 		
		 2. Sublimation of a dicarboxylic acid/Naphthalene 3. Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) 		
	3	 Sublimation of a dicarboxylic acid/Naphthalene Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) TLC of Spinach 	6	
	3	 2. Sublimation of a dicarboxylic acid/Naphthalene 3. Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) 4. TLC of Spinach Open ended 	6	
	3	 2. Sublimation of a dicarboxylic acid/Naphthalene 3. Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) 4. TLC of Spinach Open ended 1. Drawing structures using softwares. 	6	
	3	 2. Sublimation of a dicarboxylic acid/Naphthalene 3. Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) 4. TLC of Spinach Open ended 1. Drawing structures using softwares. 2. Column Chromatography 	6	
	3	 2. Sublimation of a dicarboxylic acid/Naphthalene 3. Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) 4. TLC of Spinach Open ended 1. Drawing structures using softwares. 2. Column Chromatography 3. Teacher can select preparation of organic compound 	6	
	3	 2. Sublimation of a dicarboxylic acid/Naphthalene 3. Chromatographic separations – (any two) a) Separation of a mixture of two amino acids paper chromatography. b) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) 4. TLC of Spinach Open ended 1. Drawing structures using softwares. 2. Column Chromatography 	6	

References

1. . Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

3.Organic spectroscopy, William Kemp

4.Spectroscopy of organic compounds, P S Kalsi

5. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

6. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

7. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, Satyajit D. Sarker and Lutfun Nahar, Wiley

8. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th Edn., Pearson Education, Noida, 2014

9. Arthur I. Vogel, *Elementary Practical Organic Chemistry- Small Scale Preparations*, 2nd Edn., Pearson Education, Noida, 2013.

10.An Improved Method for the Extraction and Thin-Layer W Chromatography of Chlorophyll a and b from Spinach Hao T. Quach, Robert L. Steeper, and G. William Griffin, J Chem Edn, 2004, 81, 385

11. Quinone Synthesis and a Visual Introduction to Column Chromatography: An Undergraduate Experiment Danielle L. Pearson* and Russell R. A. Kitson* J. Chem. Educ. 2022, 99, 3731–3734

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	-	-	2	-	2			1	2	1	
CO 2	2		-	1	1	-	2			2	1	1	
CO 3	2	-		-	-	2	2			2	1		
CO 4	2	-			2	1	2			2	1		
CO 5	2		-	1	1	-	2			2	1		
CO 6	2	-	2		1	2	2		1		2		1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignmen t	Seminar/Gr oup Discussion	Quizes/viva	Observation Of practical Skill	End Semester Examinations
CO 1	\checkmark	\checkmark				\checkmark
CO 2	\checkmark	\checkmark	\checkmark			\checkmark
CO 3	\checkmark		\checkmark			\checkmark
CO 4		~	\checkmark	\checkmark		\checkmark
CO 5			\checkmark			\checkmark
CO 6				\checkmark	\checkmark	\checkmark

VOCATIONAL MINOR COURSES

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B. Sc. CHEMISTRY

Programme	B. Sc. Chemistry					
Course Title	INTRODUCTION TO INDUSTRIAL CHEMISTRY					
Type of Course	VOCATIONAL MI	VOCATIONAL MINOR				
Semester	Ι					
Academic	100 - 199					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	1. Basic awareness o	n types of in	dustries			
	2. Types of redox rea	actions and ti	trations			
Course	The course explore	s various in	ndustries and	d their scope	e, industrial	
Summary	processes, IPR, and a	nalytical kno	wledge acqu	isition throug	h volumetric	
	analysis.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the elementary ideas of Cosmetics, Soaps, Detergents, Textiles, Food and Petrochemical industries	U	F	Instructor-created exams / Group Tutorial Work
CO2	Acquire knowledge on elementary concepts of Paints and coatings, Polymers, Fine chemicals and Pharmaceuticals	U	F	Instructor-created exams / Assignments
CO3	Remember the early chemical technologies leading to the Industrial Revolution	R	F	Group Tutorial Work/Seminar
CO4	Analyse various unit processes involved in industry	An	Р	Instructor-created exams / Viva
CO5	Acquire skills in various titrimetric analysis of industrial importance	Ар	Р	Practical Assignment / Observation of Practical Skills
CO6	Understand the basic concepts, and ethics of Intellectual Property Rights	U	С	Instructor-created exams/Group Tutorial Work
* - Ren	nember (R), Understand (U), Apply (Ap),	, Analyse (An)), Evaluate (E),	Create (C)

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

	1 2 3 4	Industrial chemistry: An Overview History of industrial chemistry-Social Background: Industrial Revolution, Early Chemical Technologies. Types of chemical industries – Glass, Cement, Ceramics, Metals, Steel (Elementary idea only) Paints and coatings, Polymers, Agrochemicals, Fine chemicals, Pharmaceuticals (Elementary idea only) Cosmetics, Soaps and Detergents, Textiles, Petrochemicals,	1	20
	2 3	Revolution, Early Chemical Technologies. Types of chemical industries – Glass, Cement, Ceramics, Metals, Steel (Elementary idea only) Paints and coatings, Polymers, Agrochemicals, Fine chemicals, Pharmaceuticals (Elementary idea only)	1	
	3	Types of chemical industries – Glass, Cement, Ceramics, Metals, Steel (Elementary idea only) Paints and coatings, Polymers, Agrochemicals, Fine chemicals, Pharmaceuticals (Elementary idea only)	1	
	3	Metals, Steel (Elementary idea only) Paints and coatings, Polymers, Agrochemicals, Fine chemicals, Pharmaceuticals (Elementary idea only)	1	
		Pharmaceuticals (Elementary idea only)		
	4	Cosmetics, Soaps and Detergents, Textiles, Petrochemicals,		
		Food, Spices, Sugar, Brewery (Elementary idea only)	1	
	5	Management of lab chemicals and equipment, Chemical waste management, fire and health safety management	2	
	6	Methods for procuring chemicals and equipment, record keeping, supply requirements, evaluation of supply trends	2	
II		12	26	
	7	Unit process, unit operations, flow diagrams, Energy balance and materials balance, fuels, calorific value	4	
	8	Fluid flow, streamline flow, turbulence flow, viscosity, Newtonian and non-Newtonian fluids	4	
	9	Heat transfer, types of heat exchangers, refrigeration cycles	4	
		Intellectual Droporty Diabta (IDD)	9	20
III	10	Intellectual Property Rights (IPR)	-	20
	10	Basic concepts, Purpose and Ethics of IPR	1	
	11	Seven Types including – Copyright & trademarks;	2	
	12	Patents, Geographical indications & Plant varieties	1	
	13	Industrial designs, Layout designs of ICs	2	
	14	Basics of patenting, IP filing methods.	3	

IV		Scope of Industrial Chemistry	15	32
	15	Types of industries – Cottage industries, Small and Large scale industries	2	
	16	Fundamentals of entrepreneurship – Types of entrepreneurs, Entrepreneurship and economic growth	2	
	17	Process of starting a business – Search for business ideas, Sources of business idea, Idea processing, Input requirements	2	
	18	Basics of fund management, fundamentals of finance and budgeting.	2	
	19	Business proposals- Basics of product value assessment, evaluation of product quality testing, evaluation for commercialization.	2	
	20	Basics of overall project management, report preparation and presentation	2	
	21	Start-up and Financial support schemes, MSME	2	
	22	Employment Opportunities – Job positions and eligibility requirement	1	
V		Volumetric Estimation II	30	
	1	Iodimetry and Iodometry	5	
		1. Estimation of copper		
		2. Estimation of arsenious oxide		
	2	Complexometric Titrations Using EDTA	10	
		3. Estimation of Zn		
		4. Estimation of Mg		
	3	Industrial applications	15	
		 Estimation of Acetic acid content in commercial vinegar Estimation of Alkali content in Antacid Tablets Determination of hardness of water Estimation of Ascorbic acid in fruit juices 		
Books and	d Refere	ences:		

1. B.K Sharma, Industrial Chemistry, Goel Publications (1983).

- 2. R.K. Das, Industrial Chemistry, Kalyani Publications, New Delhi (1982).
- 3. W.L.Badger and J.T.Bachero, Introduction to Chemical Engineering, Tata McGraw Hill, U.S.A

4. W.L.McCabe and J.C.Smith, Unit operations in Chemical Engineering, Tata McGraw Hill N.Y

5. J.H.Perry, Chemical Engineering Hand Book, McGraw Hill, N.Y. 4. D.D.Kale, Unit Operations- 1 and

Pune Vidyarthi GrihaPrakashan, Pune

6. K.A.Gavhane, Unit Operations-II Heat and Mass transfer, Nirali Prakashan.

7. A. I. Vogel 'A Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis': (Third Ed.) (ELBS)

8. D.A.Skoog, D.M.West and S.R.crouch, Fundamentals of Analytical Chemistry, 8 thEdn., Brooks/Cole

Nelson

maph	Mapping of COs with 150s and 10s.												
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7
CO 1	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 2	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 3	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 4	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 5	-	-	2	-	-	2	3	-	2	-	3	-	3
CO 6	-	-	_	_	-	2	3	-	2	-	3	-	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment / Discussion / Seminar
- Internal Examination
- Practical Examination
- Final Examination (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3		\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark	\checkmark	
CO 6	\checkmark			\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme	B.Sc Chemistry								
Course Title	INTRODUCTION TO POLYMER CHEMISTRY								
Type of Course	VOCATIONAL	MINOR							
Semester	Ι								
Academic Level	100-199								
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours				
	4	3	-	2	75				
Pre-requisites	Fundamental know Understanding of chemical bonding and reaction mech	basic organ and molec	nic chemist	ry concepts.					
Course Summary	This course provides a comprehensive overview of polymer chemistry, covering fundamental concepts, properties, synthesis techniques, and industrial applications of polymers. Students explore polymer classification, properties, polymerization techniques, processing methods, and the characteristics of various commercial polymers. By the course's conclusion, students will have gained essential knowledge in polymer chemistry and its practical applications.								

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand various classification of polymers and types of polymerisation methods	U	С	Instructor- created exams / Quiz
CO2	Understand the important characteristics of polymers such as average molecular weight, glass transition temperature, viscoelasticity and degradation.	U	F	Class test /Assignment / Quiz
CO3	Appreciate the importance of processing techniques	U	F	Class test /Assignment / Quiz

CO4	Characterize different commercial polymers and to understand the significance of recycling	U	С	Class test /Assignment / Quiz					
CO5	Develop practical skill in analyzing properties of polymers	Ар	An	viva/ practical skill					
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Detailed Syllabus:

Module	Unit	Content	Hours	Marks
Ι	Intro	duction to Polymers	15	32
	1	Polymers and macromolecules, Monomers, Homo	3	
		and hetero polymers, Copolymers.		
	2	Classification based on origin (natural, semi-	3	
		synthetic, and synthetic), Synthesis (addition and		
		condensation), Structure (linear, branched chain, and		
		cross-linked) intermolecular forces.		
	3	Elastomers, Fibers, Thermoplastics, and	3	
		Thermosetting polymers, Tacticity.		
	4	Types of Polymerization: Chain and step growth	4	
		polymerizations, Free radical, Ionic, and		
		Coordination polymerizations with mechanism, and		
		its advantages.		
	5	Ziegler-Natta polymerization (mechanism expected).	1	
	6	Ring-opening & Group transfer polymerization	1	
		(Mechanism not needed).		
II	Prop	erties of Polymers	10	22
	7	Molecular weights of polymers: Average molecular	2	
		weights, Number average, Weight average,		
		Sedimentation average (Method of determination not		
		required).		
	8	Viscosity average molecular weight, Determination of	2	
		viscosity average molecular weight.		
	9	Polydispersity index and Molecular weight	2	
		distribution, Molecular weight and Degree of		
		polymerization.		
	10	Glass transition temperature, Definition, Factors	2	
		affecting Tg, Importance of Tg.		
	11	Viscoelasticity of polymers (Basic concepts only).	1	
	12	Polymer Degradation: Basic idea of thermal, photo,	1	
		and oxidative degradation of polymers.		
III	Polyn	nerisation Techniques	10	22

	13	Polymerization Techniques: Bulk, Solution,	5	
		Suspension, Emulsion, Melt, Condensation, and		
		Interfacial polycondensation polymerizations.		
	14	Polymer Processing: Calendering, Rotational	5	
		molding, Compression, Injection molding, Blow		
		molding, and Thermoforming.		
IV	Com	mercial Ploymers	10	22
	15	Commercial Polymers: Preparation, Structure,	1	
		Properties, and Applications of: Polyolefins (HDPE,		
		LDPE, PP, and PS).		
	16	Vinyl polymers (PVC, PVP, and EVA, Saran),	1	
		Fluoropolymers (Teflon), Acrylic polymers (PAN and		
		PMMA).		
	17	Aliphatic polyamides (nylon 66 and nylon 6),	1	
		Aromatic polyamides (kevlar).		
	18	Polyester (terylene), Polycarbonate (lexan),	2	
		Polyurethanes.		
	19	Resins, Glyptal and Formaldehyde resins (UF, MF,	1	
		and PF).		
	20	Rubbers (natural rubber - Vulcanization, EPDM, BR,	2	
		SBR, Nitrile rubber, Neoprene, Butyl rubber, and		
		Silicone rubber).		
	21	Conducting polymers, Doping (conduction	1	
		mechanism not required).		
	22	Pollution due to plastics, Recycling of plastics, Plastic	1	
		identification code.		
V	Pract	icals	30	
	Any F	Five of the following.		
	1.	Identify everyday plastics by their physical properties		
	2.	Determination of density of polymers		
	3.	Effect of liquid on rubber		
	4.	Determine glass and filler content		
	5.	Determination of total solid content of latex		
	6.	Determination of dry rubber content of latex		
	7.	Determination of alkalinity of latex		
	8.	Determination of KOH number		
	Teach	her can suggest determination of other properties of		
	polym	ners other than mentioned above (Open ended)		

References:

1. Billmeyer Jr., F. W. (2007). Textbook of Polymer Science. John Wiley and Sons, New

Delhi.

- 2. Gowarikar, V. R. (2010). *Polymer Chemistry*. New Age International Pvt. Ltd., New Delhi.
- 3. Sharma, B. K. (1989). Polymer Chemistry. Goel Publishing House, Meerut.
- 4. Arora, M. G., Singh, M., & Yadav, M. S. (1989). *Polymer Chemistry, 2nd Revised Edn.* Anmolpublications Private Ltd., New Delhi.
- 5. Saunders, K. J. (1988). *Organic Polymer Chemistry, 2nd Edn.* Chapman and Hall, London.
- 6. Stevens, M. P. (1998). *Polymer Chemistry: An Introduction, 3rd Edn*. Oxford University Press, USA.
- 7. Misra, G. S. (1993). *Introductory Polymer Chemistry*. New Age International, New Delhi.
- 8. Bhatnagar, M. S. (2014). *Polymer Chemistry*. S Chand and Company Pvt. Ltd., New Delhi (Reprint).

Further reading:

- 1. Seymour, R. B., & Carraher, C. E. (1981). *Polymer Chemistry: An Introduction*. Marcel Dekker, Inc. New York.
- 2. Odian, G. (2004). Principles of Polymerization, 4th Edn. Wiley.
- 3. Ghosh, P. (1991). Polymer Science & Technology. Tata McGraw-Hill Education.
- 4. Lenz, R. W. (1967). *Organic Chemistry of Synthetic High Polymers*. Interscience Publishers, New York.
- 5. Stevens, M. P. (1998). *Polymer Chemistry: An Introduction, 3rd Edn.* Oxford University Press.

······	0			os ana i									
	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	-	-	1	-	1	2	-	-	-	1	-	1
CO 2	2	1	-	1	2	2	2	-	1	-	1	-	2
CO 3	1	-	-	2	2	2	2	-	1	-	2	1	3
CO 4	2	-	1	3	2	3	3	-	1	1	2	3	3
CO 5	1	-	2	1	-	1	2	-	2	-	1	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt/seminar /viva	Practical skill Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B. Sc. CHEMISTRY

Programme	B. Sc. Chemistry						
Course Title	PERSPECTIVES OF INDUSTRIAL CHEMISTRY						
Type of Course	VOCATIONAL MI	NOR					
Semester	II						
Academic	100 - 199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	1. Elementary ideas	s of fuel, food	d, fertilizers,	cleansing age	nts, dyes		
	and cosmetics.2. Basic understand	ing of volum	atria titration				
Course	2. Basic understand This course details	U			production		
		-			-		
Summary	manufacturing and	5		0 0			
	cosmetics and various fertilizers and pesticide industries. The course also						
	furnishes practical	knowledge a	about the p	reparation of	the above		
	described products.						

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Learn the composition and refining	U	F	Instructor-
	processes of crude petroleum and			created exams
	petroleum products			/ Group
				Tutorial Work
CO2	Gain insight into non-petroleum fuels	R	F	Instructor-
	and clean fuels, various lubricants and			created exams
	industrial usage of coal			/ Home
				assignments
CO3	Acquire knowledge in food chemistry	U	С	Group Tutorial
	which includes an overview on various			Work/Seminar
	food additives such as food colours,			
	flavours and artificial sweeteners			
CO4	Analyse the composition and	An	Р	Instructor-
	functioning of various cleansing			created exams
	agents, dyes and cosmetics			/ Viva
CO5	Analyse the different types of	An	М	Instructor-
	pesticides as insecticides, herbicides,			created exams
	rodenticides and fungicides			/ Assignments

CO6	Gain practical skills in some	Ар	Р	Practical				
	industrially important chemical			Assignment /				
	analyses including test for food			Observation of				
	adulteration, acid value, ester value			Practical Skills				
	and saponification value of oils, TFM							
	of soaps and preparation of some							
	cosmetic products							
* - Ren	nember (R), Understand (U), Apply (Ap),	Analyse (An), Evaluate (E), C	Create (C)				
# - Fac	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metaco	Metacognitive Knowledge (M)							

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
I	ÿ		9	20
	1	Review of energy resources (renewable and non-renewable -Clean	2	
	Energy). Classification of fuels and their calorific value.			
	2	Uses of coal (fuel and non fuel) in various industries and its composition	1	
	3	Composition of crude petroleum, Refining and different types of petroleum products and their applications.	1	
	4	Fractional Distillation (Principle and process), Cracking (Thermal and catalytic cracking)	1	
	5	Elementary ideas on Non-petroleum fuels (CNG, LNG, bio-gas, fuels derived from biomass), clean fuels (wind, solar, tidal)	2	
	6	Lubricants: Solid and semisolid lubricants, synthetic lubricants	2	
II		Food Chemistry	12	26
	7	Food additives: Functional food additives, Food colours-permitted and non permitted – adulteration and Toxicology.	3	
	8	Flavours – natural and synthetic – Soft drinks – formulation. Health drinks.	3	
	9	Artificial sweeteners – Artificial ripening of fruits and its side effects.	1	
	10	Modern Food Habits: Definition and health effects of fast foods, instant foods, dehydrated foods and junk foods. Harmful effects of modern food habits.	3	
	11	Spices: Introduction, (turmeric, chilli, coriander, pepper, cardamom, cloves), general extraction procedure, applications	2	
III		Cleansing agents, Dyes and Cosmetics	18	39
	12	Cleansing Agents: Soaps – Hard and soft soaps – Alkali content – TFM – Detergents (classification) – Cleaning action – Advantages and disadvantages of soaps and detergents	3	
	13	Shaving creams-Ingredients and functions, Shampoos – Different kinds of shampoos (Anti-dandruff, anti-lice, herbal and baby shampoos).	2	

	14	Tooth paste: composition and preparation.	1			
	15	Dyes: Definition – Requirements of a dye – Theories of colour and	3			
		chemical constitution – Classification based on structure and mode				
		of application to the fabric . Industrial method of dyeing				
	16	Cosmetics: Hair dye: Types, chemicals used and its harmful	2			
		effects.				
	17	Face and skin creams: Types, ingredients and functions.	3			
		Antiperspirants, sun screen, Face and skin powders, nail polishes,				
		lipsticks, eyebrow pencils and eye liners (ingredients and				
		functions) – Harmful effects of cosmetics				
	18	Perfumes: Science of smell, history of fragrance, fragrance	2			
		sources, natural products and aroma chemicals used in fragrances,				
	19	Fragrance applications in personal care and household products,	2			
	17	safety and regulations of fragrance, emotional and psychological	2			
		effects of odours.				
IV	Fertilizers and Pesticides					
	20	Fertilizers: Essential nutrients for plants – NPK value – Natural	2			
		and synthetic fertilizers				
	21	Nitrogenous, phosphatic and potash fertilizers (examples) – Impact	2			
		of excessive use of fertilizers on environment – Biofertilizers.				
	22	Pesticides: Classification – Insecticides, herbicides, rodenticides	2			
		and fungicides (definition and examples only) – Non-degradable				
		pesticides				
V		Practical	30			
	1	Test for adulteration in selected food products (5 experiments)	15			
	2	Determination of Acid value, ester value and saponification value	7			
	2	of oils, TFM of soaps	,			
	3	Preparation of pain balms, lip balms, soaps, liquid detergent,	8			
	1	shampoo, hand sanitizer and disinfectants				
		shampoo, hand sumtizer and distinct data				
		Shumpoo, hand Sumther and distince and				

1. B.K. Sharma, Industrial Chemistry, Goel Publications (1983).

2. R.K. Das, Industrial Chemistry, Kalyani Publications, New Delhi (1982).

3. G. R. Chatwal, Synthetic Drugs, Himalaya Publishing House, Bombay, 1995.

4. J.Ghosh, A Textbook of Pharmaceutical Chemistry, S. Chand & Co Ltd., 1997

5. B. Sreelakshmi, Food Science, New Age International Pvt. Ltd, New Delhi, 2015

6. D. Swern, Bailey's Industrial Oil and Fat Products, Vol. I and II, 4th Edn., John Wiley, 1982.

7. A. I. Vogel 'A Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental

Analysis': (Third Ed.) (ELBS)

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7
CO 1	-	-	_	-	-	2	3	-	2	-	3	-	3
CO 2	-	_	_	-	-	2	3	-	2	-	3	2	3
CO 3	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 4	-	-	-	-	-	2	3	-	2	1	3	-	3
CO 5	-	-	-	-	-	2	3	-	2	1	3	-	3
CO 6	-	-	2	-	-	2	3	-	2	-	3	-	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment / Discussion / Seminar
- Internal Examination
- Practical Examination
- Final Examination (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3		\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark		\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry							
Course Title	COMMERCIAL PO	COMMERCIAL POLYMERS						
Type of Course	VOCATIONAL MI	NOR						
Semester	II							
Academic Level	100-199							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours			
	4	3	1	2	75			
	Concept of polymers.	Use of poly	mers. Knowl	edge on synth	netic polymers and			
Pre-requisites	their application.							
Course Summary	It deals with types, to rubber and fibre may engineering and bion exposed to the prob	their application. This course is intended to provide basic knowledge about commercial polymers. It deals with types, techniques of preparation and characterization of plastics, rubber and fibre materials. The applications of these materials in daily life, engineering and biomedical fields have been emphasized. The students are exposed to the problems of polymer waste management and the strategies developed to minimize plastic pollution.						

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the basic principles of polymer chemistry, including polymerization mechanisms, molecular structure, and polymer characterization techniques.	U	С	Instructor- created exams / Quiz
CO2	Students should become familiar with the major families of commercial polymers, such as polyethylene, polypropylene, polyvinyl chloride (PVC), polystyrene, polyethylene terephthalate (PET), and others.	R,U	F	Class test /Assignment / Quiz
CO3	Students should gain awareness of the environmental impact of polymers and explore sustainable practices in polymer production, usage, and disposal. They should understand concepts such as biodegradability, recycling, and the development of eco-friendly polymers.	R, U, Ap	F	Class test /Assignment / Quiz

CO4	Students should be able to correlate the molecular structure of thermoplastics with their physical, mechanical, thermal, electrical, and chemical properties. They should understand how these properties influence the selection of thermoplastics for specific applications.	R, U, Ap	С	Class test /Assignment / Quiz			
CO5	Students should learn about the synthesis methods and curing mechanisms used for thermosetting polymers, including techniques such as condensation polymerization, addition polymerization, and crosslinking reactions.	R, U	Р	Class test /Assignment / Quiz			
CO6	Students should be able to classify elastomers based on their chemical structure, polymerization mechanisms, and properties. They should also learn methods for identifying different types of elastomers	R, U	Р	Class test /Assignment / Quiz			
CO7	Develop practical skill in the preparation of various types of polymers	Ар	Р	Viva/ Practical Skill			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hours	Mark
]	INTRODUCTION TO COMMERCIAL	10	22
		POLYMERS		
	1	Types of polymer (Thermoplastics,		
		Thermosetting polymers, Elastomers, Fibers).	1	
	2	Production Methods, Polymerization,		
		Extrusion, Injection Molding, Blow Molding.	4	
	3	Properties and Applications, Mechanical	3	
Ι		Properties, Thermal Properties, Chemical		
		Resistance, Electrical Properties, Applications.		
	4	Environmental Considerations.	2	
	THER	17 Hrs	36	
II	5	Polyolefins and allied polymers, Vinyl		
		polymers, Styrene and its copolymers.	3	

	6	Acardian Delyamidan Delyastara DI		
	0	Acrylics, Polyamides, Polyesters, PU, Fluoropolymers.	3	
	7	Cellulose and its derivatives, Polycarbonates,	2	
		Polyacetals.		
	8	PES, PEI, PEEK, Polyacrylic acid, PVA,	2	
		Polyvinyl Acetals.		
	9	Thermosetting plastics, Phenol Formaldehyde,	2	
	10	Melamine Formaldehyde.	2	
	10	Urea Formaldehyde, Epoxy resins, Unsaturated polyester.	2	
	11	Vinyl esters, Cyanate esters.	1	
	11	Furan resins and Silicone polymers.	2	
	12	ELASTOMERS	2 8 Hrs	18
			0 111 5	10
	13	Lignins, Cellulose and its derivatives, Chitin,		
		Chitosan, Source, Properties and Applications.	2	
	14	Reclaimed rubber, Reclaiming processes.	1	
III	15	Elastomers, Natural Rubber, Isoprene rubber,		
		Modified forms of NR- butyl rubber, Nitrile	2	
		rubber, Chloroprene Rubber.		
	16	Styrene-Butadiene Rubber, EPDM.	1	
	17	Vulcanization, Rubber chemicals,	2	
		Thermoplastic elastomers.		
		FIBERS	10 Hrs	22
	18	Classification, Sources of fibers, Essential	1	
		properties of textile fibers.		
	19	Sources of cellulose, Sources of cellulosic	2	
		fibers, Sources of synthetic fibers.		
	20	Fibers formation, Synthesis of monomer,	2	
		Polymerization and Formation of polymer,		
TX 7		Characteristics of fibers formation polymers, Drawing.		
IV	21	Fibers structure: Unit cell, Arrangement of	3	
		chain molecules in the crystallites,	_	
		Formation and arrangement of crystallites		
		in fibers, Chemical methods.		
	22	Vegetable fibers, Cellulose, Jute, Flax,	2	
		Hemp, Ramie, Sisal, Pineapple, Coir.	-	
N7	PRAC	TICAL	30	
V		Any Five preparations of the following.		
		1. Preparation of Glyptal resin		
		 Preparation of phenol formaldehyde 		

•
resin
3. Preparation of urea formaldehyde resin
4. Preparation of aniline formaldehyde
resin
5. Preparation of polyaniline
6. Preparation of Nylon 6,6
7. Preparation of PMMA
8. Preparation of linear polystyrene (free
radical polymerization)
9. Preparation of crosslinked polystyrene (
suspension polymerization)
Teacher can suggest preparation of any
polymers other than mentioned above (Open
ended)

References

1. Introduction to Polymers" by Robert J. Young and Peter A. Lovell

- 2. "Handbook of Thermoplastics" edited by Olagoke Olabisi and Kolapo Adewale.
- 3. "Thermoplastic Materials: Properties, Manufacturing Methods, and Applications" by Christopher C. Ibeh
- 4. Thermosetting Polymers: Synthesis, Properties, and Applications" edited by Ulf W. Gedde
- 5. "Thermosets: Structure, Properties, and Applications" edited by Qipeng Guo.
- 6. Introduction to Thermosetting Plastics" by Syed Qutubuddin and Aftab Ahmed
- 7. "Elastomers: Types, Properties and Applications" edited by Aubrey Q. Stokes
- 8. "Rubber Technology Handbook" by Werner Hofmann and Walter Holzwarth
- 9. "Elastomer Technology Handbook" edited by Jiri George Drobny
- 10. Textile Fibre Structure" by M.A. Hearle, W.E. Morton, and B.S. Harwood

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	-	1	1	1	2	-	1	-	1	-	1
CO 2	2	-	-	1	2	1	2	-	1	-	1	1	1
CO 3	3	-	1	3	1	3	2	-	2	-	2	3	2
CO 4	2	-	1	1	1	2	2	-	2	1	2	2	1

Mapping of COs with PSOs and POs :

CO 5	1	-	-	1	1	1	1	-	1	-	1	-	1
CO 6	2	-	-	2	1	2	2	-	-	-	1	1	1
CO 7	2	-	2	1	1	1	2	-	1	_	-	_	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)
- .

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent/ Seminar/ Viva	Practical skill Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CO 6	\checkmark	\checkmark		\checkmark
CO 7		\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B. Sc. CHEMISTRY

Programme	B. Sc. Chemistry				
Course Title	INDUSTRIAL POL	LUTION A	ND CONTR	OL	
Type of Course	VOCATIONAL MI	NOR			
Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites					
Course	The course provides	a comprehe	ensive overvi	iew of basic	concepts of
Summary	industrial chemistry,	Types of c	hemical indu	ustries, variou	is industrial
	processes, intellectua	l property rig	ght and scope	of industrial c	chemistry.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the adverse effects of emissions from chemical industries and guidelines set by the environmental protection agencies.	U	С	Seminar presentation /Assignment
CO2	Understand the causes and effects of air pollution.	Ар	Р	Class test /Quiz /Assignment
CO3	To give an insight to various pollution control measures	An	Р	Seminar Presentation / Instructor created exam
CO4	To familiarise waste water treatment methods	U	С	Instructor- created exams / Home Assignments
CO5	Explain different techniques for municipal solid waste and hazardous waste management	Ар	Р	Assignment /Seminar presentation /Class test

CO6	Gain practical skills in some	Ap	Р	Lab work /Viva				
	industrially important chemical			Voce				
	analyses							
* - Re	emember (R), Understand (U), Apply	(Ap), Analyse	(An), Evaluate (E), Create (C)				
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metao	cognitive Knowledge (M)	_						

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
Ι		Industrial pollution	9	20
	1	Types of pollution	1	
	2	Types of emissions from chemical industries and	2	
		effects of environment		
	3	Environment legislation	2	
	4	Effluent guidelines and standards	2	
	5	Sources and characteristics of pollutants in fertilizer,	2	
		paper and pulp industry, petroleum and petroleum industry		
II		Air pollution	12	26
	6	Definition, Air quality, standards, emission standards,	2	
		source and classification of air pollutants.		
	7	Major air pollutants – Oxides of carbon, nitrogen and sulphur	2	
	8	Particulates – London smog and photochemical smog	2	
	9	Air pollution control measures – Gravitational settling chamber, fabric filter	2	
	10	wet scrubber, catalytic converters, stacks and chimneys,	2	
		cyclone collectors		
	11	Cottrell electrostatic precipitator, extraction ventilator, zoning and green belt.	2	
III		Water pollution	12	26
	12	Water quality parameters: DO, BOD and COD – Determination of BOD and COD	2	
	13	Toxic metals in water (Pb, Cd and Hg) – Minamata disaster (a brief study). Control of water pollution – Need for the protection of water bodies.	2	
	14	Sewage Treatment: Importance of sewage treatment, broad outline of sewage treatment (preliminary treatment, primary treatment, secondary or biological treatment disinfection	3	
	15	Sewage disposal methods of sewage, natural methods (dilution and land treatment)	3	

	16	miscellaneous treatments (oxidation ponds, aerated	2	
		lagoons, oxidation ditch, anaerobic lagoons)		
IV		Soil pollution	12	<mark>26</mark>
	17	Soil pollution: Sources by industrial and urban wastes	2	
	18	Solid waste management - Sources and generation of solid wastes, their characterization, reduce-reuse-recycle paradigm	2	
	19	Chemical composition and classification of solid wastes	2	
	20	methods of disposal –sanitary landfill, secured land fill, incineration, pyrolysis, types of composting	2	
	21	Hospital waste and hazardous waste, rules regarding solid waste management	2	
	22	recycling of waste material, waste minimization technologies.	2	
V		 Water analysis a. Determination of chemical oxygen demand (COD). b. Determination of biological oxygen demand (BOD) c. Estimation of Fluoride, Phosphate, Nitrate, Nitrite and Sulphate Soil analysis a. Determination of TOC. b. Analysis of soil Sulphate. c. Determination of Ca2+ and Mg2+ 	30	

References:

1. Rao. C.S., "Environmental Pollution and Control Engineering", 2nd Edition, Revised, New Age International, 2007

2. Mahajan. S.P., "Pollution Control in Process Industries", Tata-McGraw Hill, New Delhi, 1985.

3. Narayana Rao, M. and Datta, A.K., "WasteWater Treatment", 2nd Edition, Oxford and IBH Publications, New Delhi, 2005.

4. Swamy, A.V.N., "Industrial Pollution Control and Engineering", Galgotia Publications, Hyderabad, 2005.

5. S. K. Banerjee, *Environmental Chemistry*, 2nd Edn., Prentice-Hall of India Pvt. Ltd., New Delhi, 2005.

6. A. K. De, Environmental Chemistry, 6th Edn., New Age International

7. N. P Cheremisinoff, Handbook of Air Pollution Prevention and Control, 2002.

8. M. Senapati, Advanced Engineering Chemistry, 2006.

9. K. C. Schifftner, Air Pollution Control Equipment Selection Guide, CRC Press, 2013.

10. K. B. Schnelle, C. A. Brown, Air Pollution Control Technology Handbook, CRC Press, 2016.

11. A. I. Vogel 'A Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis': (Third Ed.) (ELBS)

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7
CO 1	-	-	-	-	1	-	3	-	2	_	3	-	3
CO 2	-	-	-	-	1	-	3	-	2	-	3	-	3
CO 3	-	-	-	-	-	1	3	-	2	-	3	-	3
CO 4	-	-	-	-	-	1	3	-	2	-	3	-	3
CO 5	-	-	-	-	-	1	3	-	2	-	3	-	3
CO 6	-	-	2	-	-	2	3	-	2	-	3	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment / Discussion / Seminar
- Internal Examination
- Practical Examination
- Final Examination (70%)

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3		\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark	\checkmark	
CO 6	\checkmark			\checkmark

Mapping of COs to Assessment Rubrics :

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	PLASTICS AND FIBER TECHNOLOGY							
Type of Course	VOCATIONAL MINOR							
Semester	III	III						
Academic	200-299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Foundation course in polymer chemistry							
Course	To impart the basic	concepts of	of Mixing a	nd compound	ling various			
Summary	Summary moulding techniques. Understand about reinforced plastics an				es and fiber			
	technology							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basics of plastic processing and the role of additives in plastics and Describe the principles and techniques involved in mixing and compounding of plastics	U	С	Class test /Assignment / Quiz
CO2	Explain and describe the principles and processes involved in plastic injection molding	R,U	С	Class test /Assignment / Quiz
CO3	Analyze the principles of calendering, laminating, and 3D printing in plastic processing	An	С	Class test /Assignment / Quiz
CO4	Understand the principles, processes involved and equipment used in	U	С	Class test /Assignment / Quiz

	compression molding, transfer molding, blow molding, rotational molding, and reaction injection molding			
CO5	Identify different types of fibers used in industries including cellulose derivatives, polyolefinic, polyester, polyamide, aramid, carbon, and glass fibers.	A	С	Class test /Assignment / Quiz
CO6	Describe fiber spinning operations and the manufacturing process of various types of cords used in the tire industry	U	С	Class test /Assignment / Quiz
CO7	Develop practical skill in different compounding , dipping and molding techniques	Ар	Р	viva/ practical skill
# - Fac	member (R), Understand (U), A ctual Knowledge(F) Conceptual ognitive Knowledge (M)			

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks		
Ι			9	25		
	Mixi	Mixing and compounding				
	1	1 Introduction to plastic processing, additives for plastics – Fillers,				
		Antioxidants				
	2	Stabilisers, Colourants, Flame retardants	2			
	3	Plasticisers. Mixing and compounding of plastics	2			
	4	Mixing and compounding equipments- Compounding by batch mixer	2			
	5	High speed mixer - Two roll mill - Banbury Mixer - Ribbon blender -	2			
		Planetary mixers				
II		Moulding techniques	18	25		
	6	Plastic injection moulding, different types of injection moulding machines,	1			
	7	details of injection moulding machine, injection moulding of	2			
		thermosets.				

	8	Extrusion, details of extruders, twin screw extruders, dies, post	2	
		extrusion processing		
	9	Calendaring. Laminating, 3D printing.	4	
	10	Compression moulding: hydraulic presses, press capacity and pressure	1	
		calculations, moulding process.		
	11	Transfer moulding: moulding process and advantages, Blow	4	
		moulding: extrusion and injection blow moulding.		
	12	Rotational moulding: process and equipment.	2	
	13	Reaction injection moulding: introduction, process and advantages.	2	
III		Reinforced plastics	9	24
	14	Reinforced plastics	1	
	15	Processing techniques	2	
	16	Hand lay-up, spray lay up	2	
	17	Filament winding autoclave, Bag moulding	4	
IV		Fiber technology	9	24
	18	Fibers from cellulose and its derivatives	1	
	19	Polyolefinic, polyester, polyamide, aramide	2	
	20	Carbon and glass fibers, Fiber spinning operations	2	
	21	Different types of cords used in tyre industry, definition of denier, tex,	2	
		tenacity		
	22	Different types of twisting, geo textiles	2	
V		PRACTICALS	30	
		Any Five experiments from the following can be done		
		1. Preparation of dispersions of solid latex compounding		
		2. preparation of emulsions of liquid compounding ingredient		
		3. preparation of latex compounding for household gloves and		
		finger caps		
		4. production of finger caps by dipping process		
		 production of balloon by dipping process practice production of table mat 		
		7. Hands on training in production of injection moulded plastic		
		articles		
		8. Hands on training in production of blow moulded plastic		
		articles		
		9. Hands on training in production of compression moulded		
		plastic articles		

References

1. C. J. Crawford, *Plastic Engineering*, Pergamon Press, London ,1999.

2. D. H. Morton, *Polymer processing*, Chapman and Hall, London, 1989.

3. George Mathews, Polymer mixing technology, Applied Science Publishers, London, 1982.

4. Joel Frados (Ed) *Plastic Engineering* Hand book, Van Nostrand Reinhold Company, New

York, 1976.

- 5. Polymer Science and Technology,2nd Edn. Joel Fried, Prentice Hall of India Ltd.
- 6. Text Book of Polymer Science, 3rd Edn. Fred W BillMeyer, JR. Wiley
- 7. Polymer Science, 3rd Edn. VR Gowariker, NV Viswanathan, Jayadev Sreedhar, New Age

International Publishers

8. Polymer Chemistry, Dr BK Sharma, Goel Publishing House.

Mapp	Tapping of COS with PSOS and POS :												
	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3		1	2	1	2	3		2	2			3
CO 2	3		1	-	-	2	3		2	2			3
CO 3	3	-	2	-	-	3	3		3	2			3
CO 4	3	-	2		-	2	3		1	2			2
CO 5	3		2	-	-	2	2		1	1			3
CO 6	3	-	2		-	2	3		1	2			2
CO 7	3		3			3	3		3	3		2	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

ssessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		\checkmark
CO7		\checkmark	\checkmark	

Mapping of COs to Assessment Rubrics :

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry								
Course Title	INDUSTRIAL QUALITY MANAGEMENT								
Type of Course	VOCATIONAL MINOR								
Semester	VIII								
Academic	300 - 399								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
	management conceptThis includes knowleimprovement techniqprocesses.2. Problem-Solving Sskills are crucial for iand developing effect	dge of qualit ues (e.g., Six skills: Strong dentifying qu tive solutions	y standards (x Sigma, Lear problem-sol aality issues, x.	e.g., ISO 9001 n), and quality ving and critic analyzing root), quality assurance al thinking t causes,				
Course Summary	To give the students functions and pri management, strateg assistance tools, tota resource developmen	nciples of gic manage l quality ma	manageme ment proces nagement to	nt, administ ss, quality r ols & techniq	ration and nanagement ues, human				

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Foundational understanding of management principles, functions, theories, and organizational structures, enabling the students to apply this knowledge in practical contexts within various types of organizations.	U	С	Instructor-created exams / Quiz /Assignment
CO2	Students equipped with the knowledge and skills to analyze business environments, formulate effective strategies, evaluate strategic options, and implement strategic plans to achieve organizational success and competitive advantage.	An	С	Class test /Assignment /Quiz

CO3	Able the students to apply quality management principles, tools, and standards to improve processes, enhance product/service quality, meet customer expectations, and ensure organizational excellence.	Ар	Р	Assignment/ Class test/Seminar presentation
CO4		Ар	Р	Assignments /Seminar presentation
CO5	Have a solid understanding of Management Information Systems, their components, functions, and strategic importance in supporting decision-making, enhancing business processes, and enabling digital transformation in organizations.	U	С	Instructor created exams /Assignment /Quiz
	emember (R), Understand (U), Apply (Ap) actual Knowledge(F) Conceptual Knowled	-		
	vledge (M)			

Module	Unit	Content	Hrs	Marks
Ι		Basic Management	11	24
	1	Introduction, Definition and characteristics of management.	1	
	2	Functions of management - Planning, Organising, Staffing,	2	
		Directing, Coordination, Controlling, Motivating, Communication,		
		Decision Making.		
	3	Principles of management – F. W. Taylor, Henry Fayol, Elton	2	
		Mayo.		
	4	Administration and management, Nature of management, levels of	3	
		management, managerial skills, managerial roles.		
	5	Forms of Organization- Line, Line-staff etc. Forms of ownerships	3	
		- Partnership, Proprietorship, Joint stock, Co-operative society,		
		Govt. Sector etc.		
II		Strategic Management	9	18
	6	Concept and Characteristics of strategic management –Defining	3	
		strategy – Mintzberg's 5P's of strategy – Corporate, Business and		
		Functional Levels of strategy.		
	7	Strategic Management Process.	1	

	8	Preparing an Environmental Threat and Opportunity Profile (ETOP)	2	
	9	Industry Analysis - Porter's Five Forces Model of competition. BCG Matrix – GE 9 Cell Model -Balanced Scorecard, Generic Competitive Strategies: Low cost, Differentiation, Focus.	3	-
III		Quality Management	14	28
	10	Definition of quality, goalpost view of quality, continuous mprovement	2	
	11	Types of quality – quality of design, conformance and performance, phases of quality management, Juran and Deming's view of quality	3	-
	12	Quality Management Assistance Tools: Ishikawa diagram – Pareto Analysis – Pokka Yoke (Mistake Proofing).	3	
	13	Quality circles, Total Quality Management (TQM), Barriers to TQM, Kaizen, Five S (5S), Six sigma Quality Management Standards – concepts, methodology, principles, applications to manufacturing	3	
	14	The ISO 9001:2000 Quality Management System Standard- The ISO14001:2004 EnvironmentalManagement System Standard- ISO27001:2005	3	
	15	Information Security Management System	2	
IV	ТС	M Tools & Techniques and human resource development	14	28
		in roots & reeninques and numan resource development	14	20
	16	The seven traditional rules of quality, New management rules	2	
				20
	16	The seven traditional rules of quality, New management rules Benchmarking, reason to bench mark, Benchmarking process,	2	
	16 17	The seven traditional rules of quality, New management rulesBenchmarking, reason to bench mark, Benchmarking process,FMEA: stages and typesQuality function deployment, TPM- concepts, improvements	2 2	
	16 17 18	 The seven traditional rules of quality, New management rules Benchmarking, reason to bench mark, Benchmarking process, FMEA: stages and types Quality function deployment, TPM- concepts, improvements needed, cost of quality, performance measures and appraisal Team and team work, recognition and rewards, PDSA (Plan-Do-Study-Act) cycle, customer focus-customer orientation, customer 	2 2 2	
V	16 17 18 19	 The seven traditional rules of quality, New management rules Benchmarking, reason to bench mark, Benchmarking process, FMEA: stages and types Quality function deployment, TPM- concepts, improvements needed, cost of quality, performance measures and appraisal Team and team work, recognition and rewards, PDSA (Plan-Do- Study-Act) cycle, customer focus-customer orientation, customer satisfaction, customer complaints and customer retention Strategic importance HRM, objectives of HRM, HR department operations, Human Resource Planning - objectives and process; 	2 2 2 4	
V	16 17 18 19	 The seven traditional rules of quality, New management rules Benchmarking, reason to bench mark, Benchmarking process, FMEA: stages and types Quality function deployment, TPM- concepts, improvements needed, cost of quality, performance measures and appraisal Team and team work, recognition and rewards, PDSA (Plan-Do- Study-Act) cycle, customer focus-customer orientation, customer satisfaction, customer complaints and customer retention Strategic importance HRM, objectives of HRM, HR department operations, Human Resource Planning - objectives and process; human resource information system. 	2 2 2 4 4	

commerce, types - B2B, B2C, C2B, C2C etc., Business Process	
Re-engineering (BPR)	

References:

- 1. P. Khanna, "Industrial Engineering and Management", Dhanpatrai publications Ltd, New Delhi.
- 2. L.C.Jhamb, Savitri Jhamb, Industrial Management I, Everest Publishing House.
- 3. Dinesh Seth and Subhash C. Rastogi, "Global Management Solutions", Cengage Learning, Second Edition, USA.
- 4. B. Davis and Margrethe H. Olson, "Management Information Systems", Mc-Graw-Hill International Editions.
- 5. Azar Kazmi, "Strategic Management & Business Policy", Tata McGraw Hill, New Delhi
- 6. Kenneth C. Laudon and Jane P. Laudon, "Management Information Systems", 8th Edition, Pearson Education
- 7. K. Shridhara Bhat, "Materials and Logistics Management", Himalaya Publishing House, Mumbai
- 8. M.Y. Khan and P. K. Jain, "Financial Management", Tata McGraw Hill, New Delhi
- 9. Ravi M. Kishore, "Project Management", Tata McGraw Hill, New Delhi
- 10. Donna C.S., Summers, "Quality Management", 2nd Edition. Prentice Hall, Upper Saddle River, NJ. ISBN-13: 9780135005101.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7
CO 1	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 2	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 3	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 4	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 5	-	-	-	-	-	2	3	-	2	-	3	-	3
CO 6	-	-	-	-	-	2	3	-	2	-	3	-	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment / Discussion / Seminar
- Internal Examination
- Practical Examination
- Final Examination (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignme nt	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3		\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark	\checkmark	
CO 6	\checkmark			\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	POLYMERS IN INDUSTRY						
Type of Course	VOCATIONAL MI	NOR					
Semester	VIII						
Academic Level	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	4			60		
Pre-requisites							
Course Summary	"Polymers in Industry" offers an in-depth exploration of the wide-ranging applications of polymers across various industrial sectors						

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Students should gain insight into the diverse	R, U, Ap	С	Class test
	range of applications and uses of natural fibers			/Assignmen
	across industries such as textiles, apparel,			t / Quiz
	home furnishings, agriculture, packaging,			
	construction, and craft industries			
CO2	Students will conduct a comparative	Ap,An, E	C,M	Class test
	environmental analysis between natural and			/Assignmen
	synthetic fibers and they will evaluate the life			t / Seminar
	cycle environmental impacts of both fiber			
	types			
CO3	Students will become familiar with basic	U	С	Class test
	terminology related to adhesives, including			/Assignmen
	terms such as viscosity, cure time, tack,			t / Quiz
	cohesive strength, adhesive failure, and cohesive failure			
CO4	Students will explore theories of adhesion,	U, Ap	С	Class test
	including mechanical interlocking,			/Assignmen
	electrostatic attraction, diffusion, and			t / seminar
	chemical bonding theories. They will			
	understand how these theories contribute to			

	the understanding of adhesive bonding at the						
	molecular level.						
CO5	Students will develop a comprehensive	U, Ap	С	Class test			
005	understanding of pigments and paints,	0,11p		/Assignmen			
	including their composition, properties, and			t / seminar			
	applications in various industries such as			• • • •			
	coatings, plastics, printing, and cosmetics						
CO6	Develop a comprehensive understanding of	R,U	С	Class test			
000	food packaging materials, including	11,0		/Assignmen			
	conventional materials (e.g., plastics, metals,			t / Viva			
	glass) and emerging edible and biobased			c, vivu			
	materials. They will learn about the properties,						
	functionalities, and applications of different						
CO7	packaging materials in the food industry Develop a thorough understanding of	R,U,Ap	С	Class test			
07	polymers used in biomedical applications,	к,0,Ар	C	/Assignmen			
	including their chemical structures, properties,			t / seminar			
	and biocompatibility and students will learn			t / Seminai			
	about polymer types such as biodegradable						
	polymers, hydrogels, elastomers, and						
G QQ	nanocomposites	D II A					
CO8	Students will develop a thorough	R,U,Ap	C,M	Class test			
	understanding of the properties of polymers relevant to aerospace applications, including			/Assignmen			
	mechanical properties (e.g., strength, stiffness,			t / Quiz			
	toughness), thermal properties (e.g., heat						
	resistance, thermal expansion), chemical						
	resistance, and durability in harsh						
	environments (e.g., UV radiation, moisture,						
	space vacuum)						
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
	tual Knowledge(F) Conceptual Knowledge (C)	Procedural K	nowledge (P)				
Metaco	ognitive Knowledge (M)						

Module	Unit	Unit Content				
Ι		Polymers in fiber industry	12	24		
	1	Harvesting, extraction, processing, and characteristics of natural fibers (cotton, wool, silk, jute, flax).	2			
	2	Application and uses of natural fibers in textiles. Regenerated cellulose fibers-viscose,tencel, cellulose acetate and triacetate (Mention only)	2			
	3	Polyester, nylon, acrylic, polypropylene, polyethylene, acetate, Lycra and their manufacturing processes. Properties and advantages of synthetic 2 fibers.	3			

	4	Comparison with natural fibers in terms of properties and applications. Environmental considerations in synthetic fiber production.	2	
	5	Other fiber forming materials -glass, ceramic, carbon and metal. Innovations in fiber technology. Sustainable practices in textile fibers.	3	
		Polymers in adhesives coating	15	30
	6	Adhesives-adhesive bonding, advantages-adhesive classification basic terminology, theories of adhesion-wettability	2	
	7	Performance of adhesives - shear, peel and cleavage properties, factors affecting adhesive performance	2	
	8	Design of adhesive joints, selection of adhesives. Structural adhesive, types - epoxy, urethane, acrylic, phenolic and high temperature and PVC plastisol types	2	
п	9	Advantages and disadvantages, anaerobic adhesives, cyanoacrylates, hot melt adhesive, pressure sensitive adhesives, silicone adhesives, water based adhesives, inorganic adhesives	2	
	10	Pigments and paints, inorganic pigments & organic pigments, extenders paint preparation factors affecting dispersion, preparation of pigment dispersion	2	
	11	Surface preparation and paint application techniques. Paint properties and their evaluation, mechanism of film formation factors affecting coating properties, methods used for film preparation	3	
	12	Carrier properties, optical properties, ageing properties, rheological properties and adhesion properties of coatings.	2	
		PACKAGING APPLICATIONS	10	22
	13	Edible and biobased food packaging materials, Edible film and coating,	2	
	14	Polysaccharide based coatings, Lipid based coatings, Protein based coating, First, Second and Third biobased packaging materials.	2	
III	15	Permeability of thermoplastic polymers, Multilayer films, Processing, Deteriorative reaction in foods, Enzyme reactions, Chemical reactions,	2	
	16	Physical change, Biological change, shelf life of foods, Factors controlling 2 shelf life.	2	
	17	Packaging of dairy products, Packaging of cereals, snack foods and confectionary,Packaging of beverages, Comparison of polymer packaging with paper, metal and glass materials	2	
IV		POLYMERS IN BIOMEDICAL APPLICATION	11	22

	18	Definition of biomedical Polymers and its classification, Criteria for the Selection of Biomedical Polymers	2	
	19	Properties of biomedical Polymers, : Polymers for biomedical applications– Polymers in dentistry	2	
	20	polymers in Tissue adhesives, Dialysis Membrane	2	
	21	Polymers in Blood oxygenators, Bone cement, Prostheses	2	
	22	polymers in Biodegradable sutures, Control drug delivery systems	3	
		POLYMERS IN AEROSPACE APPLICATION	12	
	24	Requirement of polymer characteristics for in space usage, polymers in aerospace applications: thermal blanket, helmet,	4	
v	25	polymers in aerospace applications: Adhesive, Space Suits	3	
	26	polymers in aerospace applications: Eelectronic applications, structural applications	2	
		Important plastics used in Aerospace industry (Thermosetting polyimide, Polyetheretherketone,Polyamide- imide,Polycholrotrifloroethylene,PTFE	3	

References

- 1. Gowariker, V.R., Viswanathan, N.V., Sreedhar, J., *Polymer Science*, Wiley, New Delhi, India, 1990.
- 2. Billmeyer, F.W., Textbook of polymer science, Wiley, New Delhi, India, 2007.
- 3. Deopura, B.L., Alagirusamy, R., Joshi, M., Gupta, B., *Polyesters and polyamides*, Woodhead Publishing Limited, Cambridge, UK, 2008.
- 4. Ebewele, R.O., Polymer science and technology, CRC Press, New York, USA, 2000.
- 5. Cook, J.G., *Handbook of textile fibers natural fibers*, p. 240, Woodhead Publishing, Cambridge, UK, 1984.
- 6. W. C wake, Adhesives and the Formulation of Adhesives, Applied science Publishers, London, 1976.
- 7. Yosomiya R, Morimoto K, Nakajima A, Ikada Y, Suzuki T. Adhesionand bonding in composites. 1st ed. New York: Marcel Dekker Inc.;1989.
- 8. R. Sinha, outlines Polymer Technology, Prentice Hall India, 2000.
- 9. P. M Ajayan, L.S Schadler and P. V Braun, nanocomposite Science and Technology, Wiley-VCH GmbH Co.
- Ito K. Structural adhesives for aerospace applications. Int Poly Sci Technol, vol 14, no 8, 1987, pp 37-43

11. Thomas D K. Uses of rubber and composites in aerospace. Plast Rubber Int, vol 8, no 2, April 1983, pp 53-57

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	-	1	1	2	3	3		2	1	2	2	3
CO 2	2		2	2	1	1	3	1	2	1	2	3	2
CO 3	3	-	2	-	-	-	3					2	2
CO 4	3	-	2	1	-	-	3					1	1
CO 5	3		1	2	-	-	3		1		1	2	2
CO 6	3	-	1	2	1	1	3		1		2	2	2
CO 7	3			2	2	3	3		2		2	3	3
CO 8	3			3	2	3	3		2		2	3	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark		\checkmark
C07	\checkmark	\checkmark		\checkmark
CO8	\checkmark	\checkmark		

SKILL ENHANCEMENT COURSES

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry								
Course Title	CHEMISTRY	CHEMISTRY IN EVERYDAY LIFE							
Type of Course	SEC								
Semester	V								
Academic	100 - 199	100 - 199							
Level									
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours				
		week	per week	per week					
	3	3	-	-	45				
Pre-requisites	1. Fundam	nental Chemist	ry						
	1. Polyme	1. Polymers- Natural and synthetic							
Course	This course ope	This course opens the the vast domain of applied Chemistry for all							
Summary									

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation					
		Level*	Category#	Tools used					
CO1	To understand the composition of	U	F	Instructed					
	products used in everyday life			created					
				exams, quiz					
CO2	To create awareness on the safety	An	С	Seminars					
	regulations of food products								
CO3	To gain knowledge on beverages	U	С	Assignment					
CO4	To develop environmentally friendly	An	Р	Observation					
	polymers			of practical					
				skill					
CO5	To apply eco-friendly plastic disposal	E	Р	Exams					
	methods								
CO6	To demonstrate efficient energy storage	U	F	Assignment/p					
	systems			pt					
				presentations					
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)								
Metao	cognitive Knowledge (M)								

Module	Unit	Content	Hrs	Marks
Ι	Diary P	roducts and Beverages	10	20
	1	Composition of milk and milk products.	2	
	2	Analysis of fat content, minerals in milk and butter.	2	
	3	Estimation of added water in milk.	1	
	4	Beverages: Analysis of caffeine in coffee and tea,	2	
	5	Detection of chicory in coffee	1	
	6	Chloral hydrate in toddy,	1	
	7	Determination of methyl alcohol in alcoholic beverages	1	
II		Food additives	10	20
	8	Food additives – definitions, classification, and function	1	
	9	Antioxidants, Preservatives, Emulsifiers, Stabilizers, sweeteners, thickening agents, chelating agents, curing agents, leavening agents, anti-caking agents, colouring agents	2	
	10	Flavouring agents, stimulants. Functional rule of food additives	2	
	11	Safety and regulations of food additives.	2	
	12	Food allergy and intolerance	2	
	13	Benefits of additives- Side effects of food additives	1	
III		10	20	
	14	Basic concept of polymer- classification and characteristics of polymers	2	
	15	Applications of polymers as plastics in electronics, automobile components, medical fields and aerospace materials.	3	
	16	Problems of plastic waste management.	2	
	17	Strategies for the development of environment-friendly polymers	3	
IV		Chemical and Renewable Energy Sources:	6	10
	18	Principles and applications of primary & secondary batteries and fuel Cells	3	

	19	Basics of solar energy	3	
V		Open Ended: (Practical experience may be offered)	9	
		Analysis of milk, beverages		
		Synthesis of a polymer		
		A project on Food labels and the actual contents		
		Review project on solar cells and batteries		

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-	3	-	1	-	1	-
CO 2	2	3	-	-	-	-	2	-	-	-	-	2
CO 3	-	-	1	-	-	-	2	-	-	-	-	-
CO 4	-	-	2	3	-	-	2	-	2	-	-	2
CO 5	-	1	-	-	-	-	-	-	-	-	-	2
CO 6	-	-	-	3	-	-	2	-	1	-	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	

References

- **1. B**. K. Sharma: Introduction to Industrial Chemistry, Goel Publishing, Meerut (1998)
- 2. Ashtoush Kar. Medicinal Chemistry (Two Colour Edition), New Age International Pvt Ltd, 2022
- 3. Edward Cox Henry , The Chemical analysis of Foods , Hardcover , Hassell Street Press , 2021
- **4.** Fred Billmeyer : Textbook of polymer science; Wiley 3rd addition.

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry								
Course Title	CHEMISTRY	CHEMISTRY OF COSMETICS							
Type of Course	SEC								
Semester	V	V							
Academic	100 - 199	100 - 199							
Level									
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours				
		week	per week	per week					
	3	3	-	-	45				
Pre-requisites	1. Nomenclatur	re of organic co	ompounds						
	2. Properties of emulsifiers, surfactants etc								
Course	This course ex	This course explores application of Chemistry in the synthesis of cosmetic							
Summary	products								

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Explain the importance of Chemistry in the preparation of cosmetics	U	С	Instructor-exams				
CO2	Familiarise the chemical ingredients in cosmetics.	U	С	Assignment /Presentation/Quiz				
CO3	Recognise the essential oils and its extraction	Ар	С	Seminar Presentation / Group Tutorial Work				
CO4	Evaluate the synthesis methods of cosmetic products	Ар	Р	Practical-Synthesis				
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metao	cognitive Knowledge (M)							

Module	Unit	Content	Hrs	Marks
Ι		10	20	
	1	Overview of Cosmetic Chemistry- Role of Chemistry in	2	
		Cosmetics-		

	2	Cosmetic ingredients-Classification and properties of	2	
		cosmetic ingredients		
	3	Natural and synthetic ingredients-	2	
	4	Active and inactive ingredients is cosmetics	2	
	5	Nomenclature of cosmetic ingredients	4	
II		Cosemetic Ingrediants	10	20
	6	Colours in Cosmetics	2	
	7	Perfumes and fragrance	2	
	8	Surfactants	2	
	10	Polymers and thickners	2	
	11	Cosmetic emulsions	1	
	12	Microbilogical control and preservation of cosmetics	1	
III		Perfumes and fragrance in Cosmetics	8	15
	13	Essential oils and their importance in cosmetic industries	3	
		with reference to Eugenol, Geranial, sandalwood oil,		
		eucalyptus, rose oil, 2-phenyl ethyl alcohol, Jasmine, Civet		
		one, Mascon		
	14	Essential oils -Peppermint oil, Spearmint oil, Lavender oil,	3	
		Rosemary oil, Lemon oil, Clove oil		
	15	Extraction of essential oils- Distillation, Solvent extraction,	2	
		enfleurage Method		
IV		Preparation of Cosmetic products	8	15
	16	Preparation and uses of – lipsticks and lipbalm	2	
	17	Preparation and uses of shampoo and talcum powder	2	
	18	Preparation and uses of creams-shaving cream, Cold creams,	2	
		creams for dry skin		
	19	Safety Assessment of Ingredients- Regulatory guidelines-	2	
		Ethics and sustainability in cosmetic Chemistry		
V	Op	en Ended Module: Mastering Hashing for Efficient Data	9	
		Handling		
	1	1. Data Collection- of ingredients from labels, different		
		brands		
		2. Preparation of Cosmetic Products- shampoo, lipstick-		
		Evaluating the quality of the synthesised product		
		3. Visiting a cosmetic Industry- Group Activity		

References

- 1. Cosmetic Technology Sanju Nanda, Arun Nanda, Roop K Khar, Birla publication Pvt. Ltd
- 2. A handbook of industrial Organic Chemistry by Samuel P Sadtler, JB Lippincott company.
- 3. Handbook Industrial Chemistry by Mohammad Farhat Ali Khan, First edition
- 4. Industrial Chemistry, E. Stocchi: Vol -I, Ellis Horwood Ltd. UK.
- 5. Engineering Chemistry P.C. Jain, M. Jain: Dhanpat Rai & amp; Sons, Delhi

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-						
CO 2	2	3	-	-	-	-						
CO 3	-	-	1	-	I	-						
CO 4	-	-	2	3	I	-						
CO 5	-	1	-	-	-	-						
CO 6	-	-	-	3	-	-						

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4			\checkmark	\checkmark

Mapping of COs to Assessment Rubrics:

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry							
Course Title	ANALYTICAL TEO ASSESSMENT	CHNIQUES	IN WATER	R QUALITY				
Type of Course	SEC							
Semester	VI							
Academic	100-199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	3	2	-	1	45			
Pre-requisites	1. Basic idea on volu	metric Analy	sis					
	2. Knowledge on Wa	ater distributi	on and water	resources				
Course	1. To enable the stude	ents to becon	ne aware of t	he water quali	ty standards			
Summary	and to familiarize the	methods for	analysing wa	ater qualities.				
	2. To make them awa	2. To make them aware of the impact of water pollution and hence reduce						
	water pollution.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the analytical techniques used in chemistry for water quality monitoring	U	С	Instructor-created exams / problem solving				
CO2	Demonstrate the instrumental methods used in water quality monitoring	U	Р	Instructor- Created exams/assignment				
CO3	Enhancing the knowledge on water purification methods	U	С	Presentation- Peer Teaching				
CO4	Demonstrate the procedures for the determination of water quality	Ap	Р	Problem solving- Home Assignments				
CO5	Acquire skill on the analytical techniques used in water Analysis	Ар	Р	Doing practicals				
* - Re	emember (R), Understand (U), Apply (Ap), Analyse	(An), Evaluat	e (E), Create (C)				
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metao	cognitive Knowledge (M)							

Module	Unit	Content	Hrs	Marks				
Ι		Analytical techniques in Chemistry	8	15				
	1	An introduction to analytical methods in chemistry- concentration terms- Molarity, Molality, Normality, v/v, w/v, ppm and ppb, Dilution of solutions, standard solutions	4					
	2	Principles of Volumetric methods in water Analysis- Acid- base titrations, Redox titrations,	2					
	3	complexometric titration and precipitation titrations	2					
II		Instrumental Methods of Water Analysis	9	18				
	4	pH meter, Conductivity meter, Turbibity meter, Flame photometer, Colourimeter,	2					
	5	photometer, Colourimeter,Atomic absorption spectrophotometer (AAS), GCMS2						
	6	Ion-selective electrodes, Isotopic analysis	1					
III		Water Purification	9	18				
	7	Water resources: ground water and surface water, Importance of water, Water quality- water cycle,	1					
	8	Distribution of water -Water scarcity, Common water quality problems	1					
	9	Potable Water: Pre-treatment, coagulation, filtration, disinfection,	2					
	10	Water storage supply, Demineralization & desalination						
	11	Water softening methods-Lime soda process- Zeolite process, Ion exchange method	2					
	12	Sewage waste water treatment-Primary, Secondary and tertiary treatment & sewage water treatment plants in Kerala	2					
	13	Desalination of brackish water-Electrodialysis-Reverse Osmosis	1					
IV		Determination of Water quality parameters	10	19				
	14	Water quality monitoring	1					
	15	Water Quality parameters- Odour, Temperature, Colour, Turbidity, pH, Total Dissolved Solids (TDS), Conductivity-	2					
	16	Experimental methods for the estimation of Alakalinity, Hardness of water	2					
	17	Estimation of anions and cations from dissolved minerals	1					
	18	Experimental methods for the estimation of Biological parameters- DO, BOD, COD, Microbiological parameters,	2					
	19	Water quality standards: drinking water- WHO guidelines- Water quality standards by BIS, IS-10500-2012 on drinking water specification,17482-2020-on drinking water supply management system	2					
IV	Wate	r Quality Assessment (Open Ended)	9					
		ollowing water quality assessment may be through hands on						

1	Determination of -temperature, pH, conductivity-Instrumental Methods	
2	Determination of turbidity using Turbidity meter	
3	Determination of total dissolved solids (TDS)- Gravimetric/Instrumental method	
4	Determination of carbonate and bicarbonate using titration method (Acidimetry & Alkalimetry),	
5	Determination of Ca, Mg, Total hardness -Complexometry	
6	Determination of Ammonia and iron-Colorimetry	
7	Determination of Dissolved Oxygen (DO)- Winkler's Method-Iodometry	
8	Determination of Chloride- Argentometry	

References:

- 1. R. Ramesh & M. Anbu, Chemical methods for Environmental Analysis: Water and Sediment, Madras Macmillan.
- 2. B.K. Sharma, Instrumental methods of chemical analysis, Krishna Publication Media (P) Ltd. Meerut.
- 3. S.S. Dara, A Textbook of Environmental Chemistry and Pollution Control, 8th Edition, S. Chand and Sons, New Delhi
- 4. B.K. Sharma and H. Kaur, Environmental Chemistry, Goel Publishing House, Meerut
- 5. Water Pollution- causes, effects and control- P K Goel, New age International

mapp					5.							
	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	1	-	-	-	-	-						
CO 2	2	3	-	-	-	-						
CO 3	-	-	1	-	-	-						
CO 4	-	-	2	3	-	-						
CO 5	-	1	-	-	-	-						

Mapping of COs with PSOs and POs :

CO 6	-	-	-	3	-	-							
---------	---	---	---	---	---	---	--	--	--	--	--	--	--

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Assignmenents(20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5			\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry								
Course Title	SCIENTIFIC COM	SCIENTIFIC COMMUNICATION, PUBLIC OUTREACH AND							
	ENTREPRENEURI	ENTREPRENEURIAL SKILLS							
Type of Course	SEC								
Semester	VI								
Academic	100 - 199								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	3	2	-	1	45				
Pre-requisites	1. Foundational know	ledge in che	mistry: Fund	amental of che	emical				
	bonding and geometr	y of molecul	es, Concept o	of isomerism, i	Elements of				
	symmetry of molecul	es 2. Proficie	ency in Engli	sh to compreh	end and				
	engage in scientific w	riting and co	ommunication	1.					
Course	This course equips p	articipants v	with advance	d technical w	riting skills,				
Summary	effective science com	munication	strategies, an	d entrepreneu	rial insights,				
	preparing them for di	verse career	pathways in t	the field of ch	emistry.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
	CO Statement	Level*	Category#	Tools used
CO1	Recognize the importance of effective scientific communication in academia and in the society.	U	F	Instructor- created exams / Quiz
CO2	Acquire practical skills for the data presentation using 2D and 3D chemical structures and animations.	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Create scientific illustrations, diagrams, and video stories for science communication to the public audience.	С	М	Seminar Presentation
CO4	Comprehend the basics of entrepreneurship in science and identify opportunities in chemistry	Ар	С	Instructor- created exams / Assignments / Presentation
CO5	Apply entrepreneurial thinking in the development of research proposals	An	Р	Writing assignments
* - Re	emember (R), Understand (U), Apply (A	Ap), Analyse (A	An), Evaluate (E)	, Create (C)

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Marks
Ι		Science Communication to Public	8	15
	1	Importance of effective communication in academia and beyond and different forms of scientific communication	2	
	2	Tailoring Science for Public Audiences and adapting scientific language for non-experts,	2	
	3	Social media strategies for scientists, Science Journalism, Content Writing.	2	
	4	Interactive Public Presentations	1	
	5	Techniques for effective public speaking	1	
II		Technical skills for Academic Writing	9	18
	6	Structure and organization of scientific articles,	2	
	7	Paper formatting using MS Office, writing chemical equations and formulas, Understanding citation styles, reference management software	3	
	8	AI tools for literature review, content development, editing and data analysis.	2	
	9	Issues in scientific writing (plagiarism, authorship, ghostwriting, reproducible research).	2	
III		Entrepreneurial Skills for Scientists	9	18
	10	Introduction to Entrepreneurship in Science, identifying opportunities for entrepreneurship in chemistry	2	
	11	Basics of intellectual property rights, Understanding the patenting process	4	
	12	Overview of funding sources for entrepreneurial ventures, strategies for successful grant applications	3	
IV		Practical: Technical skills for Academic Writing	10	19
	13	Presentation of data in tables, figures and plots using excel / google sheet and using equations and functions in excel	1	
	14	Drawing 2D chemical structures using ChemSketch or Chemdraw	1	
	15	Creating 3D models of chemical structures for presentations and publications using Avogadro and JMOL; designing 3D molecular structures, measurement of bond length, bond angles and dihedral angles,	2	
	16	Visualizing atomic and molecular orbitals and analyse geometric and conformational isomers using JMOL	2	
	17	Exploring crystal structures, unit cell and symmetry operations in molecules using JMOL	1	
	18	Exploring the structure of protein and nucleic acid using JMOL	1	

	19	Creating scientific illustrations and diagrams (Inkscape, canva), video stories to communicate scientific information (Openshot, Kdenlive),	2	
V		Open Ended: Practical Application and Project Work	9	
	1	Case studies of successful scientific entrepreneurs	3	
	2	Public Communication Simulation: Role-playing scenarios for engaging with the public and media	2	
	3	Entrepreneurial Pitch Practice: Crafting and presenting a pitch for a scientific entrepreneurial idea	2	
	4	Writing and Presenting a Mock Research Proposal: Students develop a proposal integrating academic writing and entrepreneurial concepts	2	

Reference

- Communication: A Practical Guide for Scientists, Laura Bowater, Kay Yeoman, Wiley-Blackwell, 2012
- 2. Robinson, M. S.; Stoller, F. L.; Costanza-Robinson, M. S.; Jones, J. K. Write Like a Chemist; Oxford University Press: New York, 2008.
- Kovac, J. Write Like a Chemist: A Guide and Resource (Marin S. Robinson, Fredericka L. Stoller, Molly S. Costanza-Robinson, and James K. Jones). J. Chem. Educ. 2009, 86, 170.
- Kelly, Kristine. "Translating Science: From Academia to Mass Media to the Public." In Taking Science to the People: A Communication Primer for Scientists and Engineers." University of Nebraska Press, 2010. ISBN: 9780803220522.
- 5. Avogadro software tutorial: <u>https://avogadro.cc/docs/</u>
- 6. Jmol Tutorial: https://wiki.jmol.org/index.php/Jmol_Tutorials
- 7. Communicating Science with social media: <u>https://medium.com/communicating-science-</u> with-social-media
- Janet R. Morrow, Should You Become a Chemist Entrepreneur? Inorg. Chem. 2021, 60, 23, 17415–17418
- 9. Law Relating to Intellectual Property Rights, V K Ahuja, Lexis Nexis, 2017

Mapping of COs with PSOs and PO	Ds :
---------------------------------	-------------

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1				2				3				3	3
CO 2				2				3				3	3
CO 3				1				3				2	3
CO 4				2				3				3	3
CO 5				2				3				3	3
CO 6				1				3				3	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Assignment (20%)
- Presentation (20%)
- Final Exam (40%)

	Internal Exam	Assignm ent	Presentati on	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2		\checkmark	\checkmark	
CO 3		\checkmark	\checkmark	
CO 4	\checkmark			\checkmark
CO 5		\checkmark	\checkmark	

Mapping of <u>COs to Assessment Rubrics :</u>

VALUE ADDED COURSES

CALICUT UNIVERSITY – FOUR-YEAR UNDER

GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

.

.

Programme	B.Sc Chemistry							
Course Title	CHEMISTRY OF CONSUMER PRODUCTS							
Type of Course	VALUE ADDED COURSE (VAC)							
Semester	III							
Academic Level	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	3	3	-	_	45			
	Fundamentals of orga	anic chemistr	У					
Pre-requisites	Foundations of analy	tical chemist	ry					
	This course delves in	to the scient	ific principle	s behind ever	yday items such as			
	soaps, detergents, shampoos, and cosmetics. Students learn about the chemistry							
Course Summary	of manufacturing, formulation techniques, and quality control procedures.							
	Topics include how ingredients like linear alkyl benzene and sodium lauryl							
	sulfate are synthesized, as well as the creation of specialized products like anti-							
	dandruff shampoos	and herbal s	oaps. Enviro	nmental impa	act and regulatory			
	compliance are also covered. Through theory and practical lab work, students							
	gain a solid underst	gain a solid understanding of the chemistry driving these commonly used						
	consumer goods.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the process of making soaps from oils and fats, including the formulation of different types like herbal and medicated soaps.	U	С	Instructor- created exams / Quiz
CO2	Identify the ingredients and functions used in detergent production, comparing their effectiveness with traditional soap.	U	F	Class test /Assignment / Quiz
CO3	Understand the components in anti- dandruff and herbal shampoo, and their safety standards.	U	F	Class test /Assignment / Quiz

CO4	Analyze cosmetic preparation ingredients and functions to ensure the production of safe and effective products like face creams and nail polishes.	An	С	Class test /Assignment / Quiz			
CO5	Evaluate the environmental impact of consumer products, proposing sustainable practices to minimize harm.	Е	С	Class test /Assignment / Quiz			
CO6	Analyze the need for innovative solutions to challenges in consumer product chemistry, fostering creativity and improvement in the industry.	An	F	Class test /Assignment / Quiz			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs (45)	Marks
		Soaps	9	18
	1	Saponification of oils and fats. Manufacture of soaps.	1	
	2	Formulation of toilet soaps. Different ingredients used and their functions.	2	
	3	Medicated soaps. Herbal soaps. Mechanism of action of soap.	2	
	4	Soft soaps. Shaving soaps and creams.	2	
I	5	ISI specifications of soaps and creams. Testing procedures/limits.	2	
		Detergents	9	18
	6	Types of Detergents. Anionic detergents: Manufacture of LAB (linear alkyl benzene). Sulphonation of LAB – preparation of acid slurry.	1	
п	7	Different ingredients in the formulation of detergent powders and soaps. Liquid detergents. Foam boosters. AOS (Alpha Olefin Sulphonates)	2	
	8	Cationic detergents: examples. Manufacture and application. Non-ionic detergents: examples. Manufacture of ethylene oxide condensater.	2	
	9	Mechanism of action of detergents. Comparison of soaps and detergents.	2	
	10	Biodegradation – environmental effects. ISI specifications / limits for detergents.	2	
		Shampoos	8	15
ш	11	Manufacture of SLS and SLES. Ingredients. Functions.	2	
	12	Different kinds of shampoos – anti-dandruff, anti-lice, herbal and baby shampoos.	2	

	13	Hair dye. Manufacture of conditioners. Coco betaines or coco diethanolamides	2	
	14	ISI specifications for shampoos. Testing procedures and limits.	2	
		Cosmetic Preparations	10	19
	15	Face and skin powders. Ingredients, functions. Different types.	2	
	16	Snows and face creams. Chemical ingredients used. Anti perspirants. Sun screen preparations.	2	
IV	17	UV absorbers. Skin bleaching agents. Depilatories. Turmeric and Neem preparations. Vitamin oil.	2	
	18	Nail polishes: nail polish preparation, nail polish removers. Article removers.	2	
	19	Lipsticks, roughes, eyebrow pencils. Ingredients and functions. Hazards of cosmetic preparations. ISI specifications.	2	
	LINU	Open Ended: Leading firms, brand names, choosing the right product. Packing regulations. Marketing.	9	
IV	UNI T- V	Licensing – drug license – legal aspects. GMP – ISO 9000/12000 – consumer education. Evaluation of the product – advertisements. Visit to a cosmetic		
		production facility		

References

- 1. Gobala Rao.S, Outlines of chemical technology, Affiliated East West press, 1998
- 2. Kafaro, Wasteless chemical processing, Mir publishers, 1995.
- 3. Sawyer.W, Experimental cosmetics, Dover publishers, New york, 2000.
- 4. Ayaz Mahmood Dar, Cosmetic Chemistry: An Instant Approach. Educreation Publishing, 2011.
- **5.** P. K. Chattopadhyay, Modern Technology of Soaps, Detergents & Toiletries (with Formulae & Project Profiles) 4th Revised Edition, NIIR Board publication.

Mapping of COs with PSOs and Pos

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	O5	06							
CO	1		1			2	1					1	2
1													
CO	1		1			2	1					1	2
2													
CO	1		1			2	1					1	2
3													
CO	1		2			2	1					1	2
4													
CO	1		1			2	1					2	2

5									
CO	1	2	1	2	1			2	2
6									

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory	Assignment / Viva	End Semester Examination
CO1	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark
CO6	\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	SOLID WASTE MAN	IAGEMENT					
Type of Course	VALUE ADDED CO	OURSE (VA	(C)				
Semester	IV						
Academic Level	100-199						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	3	3	-	-	45		
	Fundamental knowle	dge of chemi	stry				
Pre-requisites	Chemical processes t	hat occur in t	he environm	ent, including	those related to		
	pollution						
	Basic understanding	of environme	ental chemistr	ry and the imp	oact of solid waste		
	on ecosystems and hu	ıman health					
	This course provide	s an overvi	ew of solid	waste manag	gement principles,		
	practices, and policie	es. It covers t	he generation	n, collection, t	transportation, and		
Course Summary	disposal of solid waste, with a focus on sustainable waste management						
	strategies. The course includes a discussion of waste management strategies for						
	promoting waste reduction, reuse, and recycling. Through this course, the						
	students can explore b	pest practices	for sustainab	ole waste mana	agement, including		
	waste minimization,	source sepa	ration, and	the global sta	andards for waste		
	management.						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To describe the concept of solid waste and its various components.	U	С	Instructor- created exams / Quiz
CO2	To Explore Solid Waste Collection Systems and to compare different methods of solid waste collection	U	F	Class test /Assignment / Quiz

CO3	To Comprehend waste reduction principles			Class test			
	and waste management standards	U	F	/Assignment /			
				Quiz			
CO4	To Master the different processing			Class test			
	techniques of solid waste	U	С	/Assignment /			
				Quiz			
CO5	To understand the basic principles involved			Class test			
	in the Land disposal of Solid waste, and its	U	С	/Assignment /			
	merits and drawbacks.			Quiz			
CO6	To familiarize common solid waste			Lab work			
	treatment technologies like composting,	U	F				
	recycling, and incineration						
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Fa	ctual Knowledge(F) Conceptual Knowledge (C) Procedura	al Knowledge ((P)			
Metao	cognitive Knowledge (M)						

Module	Unit	Content	Hrs	Mark
		Solid waste	9	18
	1	Solid waste: Definition, overview of solid waste	2	
		management, types of solid wastes	2	
	2	sources of solid wastes, properties of solid wastes,		
		Factors affecting the type and quality of waste	2	
	3	causes of solid waste generation, associated risks of	2	
		solid wastes		
Ι	4	Physical and chemical composition of municipal solid waste,	2	
	5	,	1	
	3	hierarchy of waste management options.	_	
		Collection, Transportation, and Processing of Solid	12	23
		waste		
	6	Key components of solid waste management:		
		Generation, storage (containers), collection	1	
	7	Specialized collection programs (hazardous waste, bulky		
		waste) and transportation (human powered, animal powered and motorized)	2	
II	8	Recycling and resource recovery, layout of routes	1	
	9	Methods of handling and processing of solid wastes:		
		separation, screening,	1	
	10	size reduction, densification, baling, cubing,	3	
		compaction, and pelleting		
	11	Waste reduction hierarchy (3R Principle - reduce, reuse, recycle).	2	

	12	Compliance assessment and certification processes,	2	
		Overview of waste management standards - ISO 14001, OHSAS 18001		
		Unit-3: Land disposal of Solid waste	7	14
ш	13	Landfilling: Site selection criteria, landfill layout, landfill sections,	2	
	14	Occurrence of gases and leachate in landfills: composition and characteristics,	2	
	15	generation factors, initial adjustment phase, transition phase, acid formation phase, methane formation phase, maturation phase of gases and leachate,	2	
	16	advantages and disadvantages of Land disposal of Solid waste	1	
	Unit-	Composting and Thermal treatment	8	15
	4			
	17	Composting: definition, types, process description, design and operational consideration of aerobic composting;	2	
IV	18	process. Description, design and operational consideration of anaerobic composting; Vermicomposting;	3	
	19	Thermalconversionmethods:incineration/combustion, pyrolysisandgasification,energy recovery system	3	
		Open-ended experiments - Suggestions	9	
V	Open Ended	Biomedical and E-waste management, Case study etc.		

References

1. Gupta O.P, Elements of Solid Hazardous Waste Management, Khanna Book Publishing Co., Delhi Ed. 2018

2. Bhide, A. D., Solid Waste Management, Indian National Scientific Documentation Centre, New Delhi.

3. George Techobanoglous, Kreith, Frank., Solid Waste, McGraw Hill Publication, New Delhi.

4. Sasikumar, K., Solid Waste Management, PHI learning, Delhi.

5. Hosetti, B.B., Prospect and Perspectives of Solid Waste Management, New Age International Publisher.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	O1	O2	O3	O4	O5	06							
CO	1					2	1				2	2	
1													
CO	1					2	1				2	2	
2													
CO	1					2	1				2	2	
3													
CO	1					2	1				2	2	
4													
CO	1					2	1				2	2	
5													
CO	1					2	1				2	2	
6													

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory	Assignment / Viva	End Semester Examination
CO1	\checkmark	\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark
CO6	\checkmark	\checkmark	\checkmark

MULTI-DISCIPLINARY COURSES

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemist	ry					
Course Title	ENVIRONMENTAL CHEMISTRY						
Type of Course	MDC						
Semester	Ι						
Academic	100-199						
Level							
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	3	3	-	-	45		
Pre-requisites	What is Enviro	nment.					
	Basic idea of en	nvironmental p	ollution.				
Course	This course en	sures that the s	students acqui	re a profound	knowledge and		
Summary	understanding	understanding on environmental pollution and the necessity of controlling					
	environmental	pollution.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Acquire the knowledge on ecosystem.	U	С	Instructor- created exams / Quiz
CO2	Recall the technical/scientific terms involved in pollution.	U	С	Instructor- created exams / Quiz
CO3	Recognize different types of toxic substances that cause environmental pollution.	U	С	Instructor- created exams / Assignment
CO4	Understand the effects of environmental pollution.	U	С	Seminar Presentation / Viva
CO5	Understand various pollution control measures.	U	С	Instructor- created exams / Quiz
CO6	Discuss and report local and global environmental issues based on the knowledge gained throughout the course.	Ар	Р	Group discussion and Seminar presentation/Viv a

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Module	Unit	Content	Hrs	Mark
		Introduction to Environmental Chemistry	9	18
Ι	1	Environmental segments-Atmosphere, Hydrosphere, Lithosphere,	2	
		Biosphere		
	2	Interaction between different environmental spheres Concept of	2	
		ecosystem, abiotic and biotic components		
	3	Composition of Air, Water and Soil	2	
	4	Environmental pollution – Concepts and definition – Pollutant,	1	
		contaminant, receptor and sink		
	5	Classification of pollutants - Global, regional, local, persistent and non-	1	
		persistent pollutants.		
	6	Types of pollution	1	
II		Air Pollution	9	18
	7	Tropospheric pollution – Gaseous air pollutants – Hydrocarbons,	2	
		oxides of sulphur, nitrogen and carbon (Elementary idea only)		
	8	Global warming, green house effect, acid rain	1	
	9	Particulates – Smog: London smog and photochemical smog –	2	
	10	stratospheric pollution - depletion of ozone layer, chlorofluorocarbons -	2	
		Automobile pollution.		
	11	Control of air pollution	2	
III		Water Pollution	10	20
111	12	water ronution	1	20
	12	Impurities in water – cause of pollution – natural and anthropogenic –	1	
		Marine water pollution – Underground water pollution.		
	13		2	
		Source of water pollution - Industrial waste, Municipal waste,		
		Agricultural waste, Radioactive waste, Petroleum, Pharmaceutical,		
		heavy metal, pesticides, soaps and detergents.		
	14	Types of water pollutants: Biological agents, physical agents and	2	
		chemical agents – Eutrophication- biomagnification and		
		bioaccumulation.		
	15	Water quality parameters: DO, BOD, COD, alkalianity, hardness,	3	
		chloride, fluoride and nitrate. Toxic metals in water and their effects:		
		Cadmium, lead and oil pollution in water.		
		cushinani, foud und on pontition in water.		
	16		2	
	10	Water pollution control methods	_	

IV		Soil, Thermal, and Radioactive Pollutions	8	14
	18	Soil pollution: Sources by industrial and urban wastes. Non-degradable, degradable and biodegradable wastes. Hazardous waste.	2	
	19	Pollution due to plastics, pesticides, biomedical waste and <i>e-waste</i> (source, effects and control measures) – Control of soil pollution - Solid waste Management – Open dumping, Landfilling, Incineration, Reuse, reclamation, recycle, composting.	3	
	20	Thermal pollution – definition, sources, harmful effects and prevention.	1	
	21	Radioactive pollution (source, effects and control measures) – Hiroshima, Nagasaki and Chernobyl accidents (brief study).	2	
V		Open Ended Module: Environmental issues	9	
	1	Environment and society Pollution case studies: Chernobyl disaster, Bhopal tragedy, Endosulfan disaster in Kerala (brief study) etc.		

References

- 1. A. K. De, *Environmental Chemistry*, 6thEdn., New Age International.
- 2. A. K. Ahluwalia, *Environmental Chemistry*, The Energy and Resources Institute, 2017.
- 3. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt Ltd, 2010.

4. S.K. Banergy, *Environmental Chemistry*, 2nd Edn., Prentice-Hall of India Pvt. Ltd., New Delhi, 2005.

5. V.N. Bashkin, *Environmental Chemistry: Asian Lessons*, Springer Science & Business Media, 2003.

6. S.E. Manahan, *Environmental Chemistry*, 8th Edn., CRC Press, Florida, 2004.

7.Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt Ltd, 2010.

8. J. M. H. Selendy, *Water and Sanitation-Related Diseases and the Changing Environment*, John Wiley & Sons, Inc.

9. P. K. Goel, Water Pollution: Causes, Effects and Control, New Age International, 2006.

10. V. N. Bashkin, *Environmental Chemistry: Asian Lessons*, Springer Science & Business Media, 2003.

11.Pallavi Saxena, Vaishali Naik, Air Pollution: Sources, Impacts and Controls, CAB International, 2018.

- 12. Gabi Mocatta(2015) Environmental Journalism, Deakin University Open School of Journalism.
- 13. D. S. Poornananda (2022), Environmental Journalism: Reporting on Environmental Concerns and Climate Change in India, SAGE Publishing India'
- 14. Frome, Michael. (1998) Green Ink: An Introduction to Environmental Journalism. Salt Lake City: University of Utah Press.
- 15. Sachsman, D. B. & Valenti, J. M. (2020). Routledge handbook of environmental *journalism*.New York, NY: Routledge.
- 16. Blum, D., Henig, R., Knudson, M., (2005). "<u>A Field Guide for Science Writers</u>." Oxford University Press; 2nd edition.
- 17. Hansen, Anders. (2010) Environment, Media and Communication. London: Routledge

map	Mapping of COs with FSOs and FOS:												
	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	1	1	1			2	1		
CO 2	1		-	-	1	1	1			1	1	1	1
CO 3	-	-		1	2	2	1			2	2	1	
CO 4	-	-			1	2	1			1	1	1	1
CO 5	-		_	1	2	2	1			1		1	1
CO 6	-	-	-	1	2	2	1			1	1	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent/viva	Quiz/seminar/ Goupdiscussio n	End Semester Examinations
CO 1	\checkmark		\checkmark	\checkmark
CO 2	\checkmark		\checkmark	\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark	\checkmark	\checkmark
CO 5	\checkmark		\checkmark	\checkmark
CO 6		\checkmark	\checkmark	

Mapping of COs to Assessment Rubrics :

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry								
Course Title	CHEMISTRY IN DAILY LIFE								
Type of Course	MDC								
Semester	II	II							
Academic	100-199								
Level									
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours				
		week	per week	per week					
	3	3	-	-	45				
Pre-requisites	Role of chemic	als in or life.							
	Basic idea of en	nvironmental p	ollution.						
Course	This course ens	This course ensures that the students acquire a profound knowledge and							
Summary	understanding	on chemicals th	hat are used in	daily life.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Know the different chemicals that sustain our life	U	С	Instructor-created exams / Quiz
CO2	Understand the role of chemistry in forensic analysis.	U	С	Instructor-created exams / Seminar
CO3	Understand the application of chemistry in agriculture and need of green methods	U	С	Instructor-created exams /Assignment
CO4	Understand the chemistry of soaps, synthetic detergents and their environmental effects.	U	С	Instructor-created exams / Seminar
CO5	Understand the chemistry of cosmetics and the effect on health.	U	С	Instructor-created exams / Quiz

CO6	Understand the chemistry of drugs,food additives their action and possible side effects	U	С	Seminar/Viva			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
Ι		Chemistry in Biological Systems & Forensic Chemistry	12	22
-	1	Vitamins and Minerals: Name, source, function and deficiency	2	
		diseases.		
	2	Enzymes - Classifications, characteristics, examples.	1	
	3	Hormones - Sex hormones - example, function. Pheromones.	2	
	4	Brain chemicals and human mood variations	1	
	5	General discussion of poisons with special reference to mode of action	2	
		of cyanide, organophosphates and snake venom.		
	6	Detection of finger print, blood stain, semen, Breath analyzer	2	
	7	Sport doping-Steroids-Anabolic agents, Stimulants, Diuretics	2	
II		Chemistry and Agriculture	6	12
	8	Essential nutrients for plants – NPK value	1	
		Chemical composition of soil, Soil enrichment		
	9	Fertilizers- natural, synthetic, mixed, NPK fertilizers. Excessive use	2	
		of fertilizers and its impact on the environment. Bio fertilizers.		
	10	Pesticides: Classification – Insecticides, herbicides, rodenticides and	2	
		fungicides (definition and examples only) – Non-degradable pesticides		
	11	Pesticide pollution and its impact on	1	
		environment – Endosulfan disaster in Kerala (brief study).		
III		9	18	
	12	Soaps – Hard and soft soaps – Alkali content – TFM – Detergents	3	
		(classification) – Cleaning action – Advantages and disadvantages of		
		soaps and detergents –		
	13	Shampoos: Ingredients and functions – Different kinds of shampoos	1	
		(Antidandruff, anti-lice, herbal and baby shampoos).		
	14	Tooth paste: Composition and health effects.	1	
		Hair dye: Chemicals used and its harmful effects.		
	15	Face and skin powders:	2	
	15	Types, ingredients and functions. Cleansing creams: Cold creams,	2	
		vanishing creams and bleach creams.		

	16	Perfumes, antiperspirants, sun screen preparations, nail polishes,	2	
		lipsticks, rouges, eyebrow pencils and eye liners (ingredients and		
		functions) – Harmful effects of cosmetics.		
IV		Pharmaceuticals and Dyes	9	18
	17	Drug: Chemical name, generic name and trade names with examples.	1	
	18	Terminology: Prodrug, pharmacy, pharmacology, pharmacophore,	2	
		pharmacognosy, pharmacodynamics and pharmacokinetics		
		(elementary idea only).		
	19	Antipyretics, analgesics, antacids, antihistamines, antibiotics,	2	
		antiseptics, disinfectants, anaesthetics, tranquilizers, narcotics,		
		antidepressants and psychedelic drugs (definition and examples).		
	20	Dyes: classification based on constitution, application, examples, uses.	2	
	21	Dyes: Requirements of a dye – Classification based on mode of	1	
		application to the fabric –		
	22	Applications of dyes (general study). Ancient and modern colours –	1	
		Mention of indigo and alizarin.		
V		Food Chemistry (OPEN ENDED)	9	
	23	Common adulterants		
		Food Additives:		
		Artificial sweeteners – Taste enhancers		
		Artificial ripening of fruits and its side effects.		
		Modern Food Habits:		

References

1. M. V. Kulkarni, Biochemistry, Pragati Books Pvt. Ltd., 2008.

2. S. C. Rastogi, *Biochemistry*, 2nd Edn., Tata McGraw Hill Publishing Co., New Delhi, 2007.

- 3. U. Satyanarayana, U. Chakrapani, *Biochemistry*, Elsevier Health Sciences, 2014.
- 4. N. V. Bhagavan, Medical Biochemistry, Academic Press, 2002.
- 5. Pharmaceutical Analysis, T. Higuchi and E.B. Hanseen, John Wiley and Sons, New York.
- 6. Quantitative Analysis of drugs, P.D. Sethi, 3rd edition, CBS Publishers, New Delhi, 1997.

7. Practical Clinical biochemistry methods and interpretations, R. Chawala, J.P. Brothers Medical Publishers (P) Ltd., 1995.

8. Laboratory manual in biochemistry, J. Jayaraman. New Age International Publishers, New Delhi, 1981.

9. H. S. Rathore, L. M. L. Nollet, *Pesticides: Evaluation of Environmental Pollution*, CRC Press, USA, 2012.

10. Murray Park, The Fertilizer Industry, Elsevier, 2001.

11. B. K. Sharma, Industrial Chemistry, Krishna Prakashan Media, 1991.

12. M. S. R. Winter, *A Consumer's Dictionary of Cosmetic Ingredients*, 7th Edn., Three Rivers Press, New York, 2009.

13. Gurdeep R. Chatwal, *Synthetic Drugs*, Himalaya Publishing House, Bombay, 1995. 14. Jayashree Ghosh, *A Textbook of Pharmaceutical Chemistry*, 3rd Edn., S. Chand and Company Ltd., New Delhi, 1999.

15. Lillian Hoagland Meyer, *Food Chemistry*, 1st Edn., CBS Publishers & Distributors, New Delhi, 2004.

16. B. A. Fox, A. G. Cameron, E. Arnold, *Food Science*, Nutrition and Health, 6th Edn., Edward Arnold, London, 1995.

- 17. A. Siddiqui, N. Anusha, *Deleterious Effects of Food Habits in Present Era*, J. Aller. Ther. 3:114, 2012.
- 18. H. S. Ramaswamy, M. Marcotte, *Food Processing: Principles and Applications*, CRC Press, 2005.
- 19. A. F. Smith, *Encyclopedia of Junk Food and Fast Food*, Greenwood Publishing Group, 2006.
- 20. T. A. M. Sagati, The Chemistry of Food Additives and Preservatives, John Wiley & Sons, 2012.
- 21. S. N. Mahindru, Food Additives, APH Publishing, 2009.
- 22. Biju Mathew, Anchor India, Info Kerala Communications Pvt. Ltd., 2015.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	1	1	1			2	1		
CO 2	1		-	-	1	1	1			1	1		1
CO 3	-	-		1	2	2	1			2	2		1
CO 4	-	-			1	2	1			1	1	1	1
CO 5	-		-	1	2	2	1			2	2	1	1
CO 6	-	-	-	1	2	2	1			2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar •
- Midterm Exam •
- Programming Assignments (20%)
 Final Exam (70%)

	Internal Exam	Assignm ent/viva	Quiz/seminar/ Goupdiscussio n	End Semester Examinations
CO 1	\checkmark		\checkmark	\checkmark
CO 2	\checkmark		\checkmark	\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark		\checkmark	\checkmark
CO 5	\checkmark		\checkmark	\checkmark
CO 6		\checkmark	\checkmark	